Cho hàm số y=f(x)=x^3+ax^2+bx+4 có đồ thị (C) như hình vẽ. Hỏi (C) là đồ thị của hàm số y=f(x) nào?

A. y = f ( x ) = x 3 - 3 x 2 + 4
B. y = f ( x ) = x 3 + 6 x 2 + 9 x + 4
C. y = f ( x ) = x 3 + 3 x 2 + 4
D. y = f ( x ) = x 3 - 6 x 2 + 9 x + 4
Cho hàm số y = f ( x ) = x 3 + a x 2 + b x + c đạt cực tiểu bằng – 3 tại điểm x=1 và đồ thị hàm số cắt trục tung tại điểm có tung độ là 2. Tính đạo hàm cấp một của hàm số tại x= -3
A. f'(-3)= 0
B. f'(-3)= 2
C. f'(-3)= 1
D. f'(-3)= -2
Tìm họ nguyên hàm F (x) của hàm số f (x) = 3 sin x + 2 x
A. F(x) = - 3 cos x + 2 ln x + C
B. F ( x ) = 3 cos x + 2 ln x + C
C. F ( x ) = 3 cos x - 2 ln x + C
D. F ( x ) = - 3 cos x - 2 ln x + C
Biết hàm số f ( x ) = x 3 + a x 2 + b x + c đạt cực tiểu tại điểm x = 1 , f ( 1 ) = - 3 và đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng 2. Tính giá trị của hàm số tại x = 3
A. f 3 = 81
B. f 3 = 27
C. f 3 = 29
D. f 3 = - 81
Cho hàm số f x = a x + b c x + d với a , b , c , d ∈ R có đồ thị hàm số y=f'(x) như hình vẽ bên. Biết rằng giá trị lớn nhất của hàm số y=f(x) trên đoạn [-3;-2] bằng 8. Giá trị của f(2) bằng.

A. 2
B. 5
C. 4
D. 6
Cho hàm số y=f(x) có đạo hàm là
f ' ( x ) = ( x − 1 ) 2 ( x + 2 ) 3 ( 3 − x ) . Khi đó số điểm cực trị của hàm số là
A. 0
B. 1
C. 2
D. 3
Cho F(x) là một nguyên hàm của hàm số f x = 1 + x − 1 − x trên tập và thỏa mãn F 1 = 3 ; F - 1 = 2 ; F - 2 = 4 ; Tính tổng T = F 0 + F 2 + F − 3 .
A. 8
B. 12
C. 14
D. 10
Cho F(x) là một nguyên hàm của hàm số f(x) trên đoạn [1;3], F(1)=3,F(3)=5 và ∫ 1 3 ( x 4 - 8 x ) f ( x ) dx = 12 . Tính I = ∫ 1 3 ( x 3 - 2 ) F ( x ) dx .
A. I= 147 2
B. I= 147 3
C. I= - 147 2
D. I= 147.
Họ nguyên hàm của hàm số f ( x ) = 1 2 x + 3 là
A. 1 ( 2 x + 3 ) 2 + C
B. − 3 ( 2 x + 3 ) 2 + C
C. − 1 2 ln 2 x + 3 + C
D. 1 2 ln 2 x + 3 + C
Xác định họ nguyên hàm F(x) của hàm số f x = x + 1 e x 2 + 2 x − 3 .
A. F x = e x 2 + 2 x − 3 + C , C ∈ ℝ .
B. F x = 2 e x 2 + 2 x − 3 + C , C ∈ ℝ .
C. F x = e x 2 + 2 x − 3 + C 2 , C ∈ ℝ .
D. F x = e x 2 + 2 x − 3 x + 1 + C , C ∈ ℝ .