Chú ý chóp – n giác có mặt cầu ngoại tiếp khi và chỉ khi đáy là đa giác nội tiếp.
Chọn đáp án C.
Chú ý chóp – n giác có mặt cầu ngoại tiếp khi và chỉ khi đáy là đa giác nội tiếp.
Chọn đáp án C.
Hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB vuông cân tại S và tam giác SCD đều. Tính bán kính mặt cầu ngoài tiếp hình chóp S.ABCD.
A. R = a 2
B. R = a 7 12
C. R = a 3
D. R = a 3 4
Cho tứ diện ABCD có tam giác ABC là tam giác cân với B A C = 120 0 , A B = A C = a . Hình chiếu của D trên mặt phẳng ABC là trung điểm của BC. Tính bán kính R của mặt cầu ngoại tiếp tứ diện ABCD biết thể tích của tứ diện ABCD là V = a 3 16 .
A. R = 91 a 8 .
B. R = a 13 4 .
C. R = 13 a 2 .
D. R = 6 a .
Cho hình chóp S . A B C D có đáy ABCD là tứ giác lồi và góc tạo bởi các mặt phẳng ( S A B ) , ( S B C ) , ( S C D ) , ( S D A ) với mặt đáy lần lượt là 90 ° , 60 ° , 60 ° , 60 ° . Biết rằng tam giác SAB vuông cân tại S , A B = a và chu vi tứ giác ABCD là 9a. Tính thể tích V của khối chóp S . A B C D ?
A. V = a 3 3 4
B. V = a 3 3
C. V = 2 a 3 3 9
D. V = a 3 3 9
Xét hình chóp từ giác đều S.ABCD có tam giác SAC nội tiếp trong đường tròn có bán kính bằng 9. Gọi d là khoảng cách từ S đến mặt phẳng (ABCD) và T là diện tích tứ giác ABCD. Tính d khi biểu thức P = d . T đạt giá trị lớn nhất.
A. d = 10
B. d = 17
C. d = 15
D. d = 12
Xét hình chóp từ giác đều S.ABCD có tam giác SAC nội tiếp trong đường tròn có bán kính bằng 9. Gọi d là khoảng cách từ S đến mặt phẳng (ABCD) và T là diện tích tứ giác ABCD. Tính d khi biểu thức P = d . T đạt giá trị lớn nhất.
A. d = 10
B. d = 17
C. d = 15
D. d = 12
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S : x − 1 2 + y 2 + z − 2 2 = 9 ngoại tiếp khối bát diện (H) được ghép từ hai khối chóp tứ giác đều S.ABCD và S’.ABCD (đều có đáy là tứ giác ABCD). Biết rằng đường tròn ngoại tiếp của tứ giác ABCD là giao tuyến của mặt cầu (S) và mặt phẳng P : 2 x + 2 y − z − 8 = 0 . Tính thể tích khối bát diện (H)
A. V H = 34 9 .
B. V H = 665 81 .
C. V H = 68 9 .
D. V H = 1330 81 .
Cho hình chóp tứ giác đều S.ABCD có các cạnh đều bằng 2a. Tính thể tích V của khối nón S có đỉnh và đường tròn đáy là đường tròn nội tiếp tứ giác ABCD.
A. V = π 3 a 3 6
B. V = π 2 a 3 3
C. V = π 2 a 3 6
D. V = π 3 a 3 3
Cho tứ diện ABCD có hai mặt ABC và DBC là những tam giác đều cạnh bằng 1, A D = 2 . Gọi O là trung điểm cạnh AD. Xét hai khẳng định sau:
( I ) O là tâm mặt cầu ngoại tiếp tứ diện ABCD.
( I I ) O . A B C là hình chóp tam giác đều.
Hãy chọn khẳng định đúng
A. Chỉ (II) đúng
B. Cả (I) và (II) đều sai
C. Cả (I) và (II) đều đúng
D. Chỉ (I) đúng
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a. Mặt phẳng qua AB và trung điểm M của SC cắt hình chóp theo thiết diện có chu vi bằng 7a (tham khảo hình vẽ bên). Thể tích của khối nón có đỉnh là S và đường tròn ngoại tiếp tứ giác ABCD bằng:
A. 2 6 9 πa 3
B. 6 3 πa 3
C. 2 3 3 πa 3
D. 2 6 3 πa 3