Cho hình chóp S.ABC có tam giác SAB vuông cân tại S; tam giác ABC vuông cân tại C và B S C ^ = 60 ° Gọi M là trung điểm cạnh SB. Côsin góc giữa hai đường thẳng AB và CM bằng
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = BC = 2a; hai mặt phẳng (SAB) và (SAC) cùng vuông góc với mặt phẳng đáy (ABC). Gọi M là trung điểm của AB; mặt phẳng qua SM và song song với BC cắt AC tại N. Biết góc giữa hai mặt phẳng (SBC) và (ABC) bằng 60 ° . Khoảng cách giữa hai đường thẳng AB và SN là:
A. 4 a 39 13
B. 3 a 39 13
C. a 39 13
D. 2 a 39 13
Cho hình chóp SABCD đáy là hình vuông cạnh 2a, (SAB) vuông góc (ABCD), tam giác SAB vuông cân tại A. Gọi H là trung điểm của AB. Tính góc giữa a) SB và (ABCD) b)SC và (ABCD)
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = BC = 2a. Hai mặt phẳng (SAB) và (SAC) cùng vuông góc với đáy (ABC). Gọi M là trung điểm của AB, mặt phẳng qua SM song song với BC cắt AC tại N. Biết góc tạo bởi (SBC) và (ABC) là 60 o . Tìm khoảng cách giữa hai đường thẳng AB và SN.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = 2a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách từ D đến (SBC) bằng 2 a 3 . Tính khoảng cách giữa hai đường thẳng SB và AC.
A . a 10 10
B . a 10 5
C . 2 a 10 5
D . 2 a 5 5
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, A B = 2 a , S A vuông góc với mặt đáy và góc giữa SB với mặt đáy bằng 60 ° . Côsin góc giữa hai mặt phẳng (SBC) và (ABC) bằng
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, SA vuông (ABC) SA= a cân 3; AB=a
A: Chứng minh (SAB) vuông (SAC)
B: Gọi M là trung điểm của BC, chứng minh BC vuông góc vs SM
C: Tính góc giữa SC và (ABC
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A. Mặt bên SBC là tam giác đều cạnh a và (SBC) vuông góc với mặt đáy. Tính theo a khoảng cách giữa hai đường thẳng SA và BC.
A. a 3 8
B. a 6 4
C. a 3 4
D. a 3 2