Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = BC = 2a; hai mặt phẳng (SAB) và (SAC) cùng vuông góc với mặt phẳng đáy (ABC). Gọi M là trung điểm của AB; mặt phẳng qua SM và song song với BC cắt AC tại N. Biết góc giữa hai mặt phẳng (SBC) và (ABC) bằng 60 ° . Khoảng cách giữa hai đường thẳng AB và SN là:

A. 4 a 39 13  

B. 3 a 39 13

C. a 39 13

D. 2 a 39 13

Cao Minh Tâm
6 tháng 6 2017 lúc 5:06

+ Ta có  S A B ⊥ A B C S A C ⊥ A B C S A C ∩ S A B = S A ⇒ S A ⊥ A B C

+ Xác định điểm N, mặt phẳng qua SM và song song với BC cắt AC tại N ⇒  N là trung điểm của AC (MN//BC).

+ Xác định được góc giữa hai mặt phẳng (SBC) và (ABC) là  S B A ^ = 60 °

⇒  SA = AB.tan 60 °  = 2a 3

AC =  A B 2 + B C 2 = 2 a 2

+ Gọi IJ là đoạn vuông góc chung của AB và SN (điểm I thuộc AB và điểm J thuộc SN). Vậy khoảng cách giữa AB và SN là IJ. Ta sẽ biểu thị IJ → qua ba vectơ không cùng phương  A B → ;   A C → ;   A S → .

I J → = I A → + A N → + N J → = m A B → + 1 2 A C → + p N S → = m A B → + 1 2 A C → + p N A → + A S → = m A B → + 1 − p 2 A C → + p A S →

Ta có: I J → ⊥ A B → I J → ⊥ N S → ⇔ I J → . A B → = 0 I J → . N S → = 0  

Thay vào ta tính được m = -6/13; p = 1/13

Do đó: I J → = − 6 13 A B → + 6 13 A C → + 1 13 A S → . Suy ra

169 I J 2 = 36 A C 2 + 36 A B 2 + A S 2 − 72 A B → . A C → .

Thay số vào ta tính được IJ = 2 a 39 13 .

Vậy d(AB; SN) = 2 a 39 13 .

Đáp án D


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết