Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đinh Trí Gia BInhf



Help me plsssss

YangSu
19 tháng 6 2023 lúc 20:09

Bài 2 :

\(a,\left(x+2\right)\left(x^2+3x-2\right)=2\left(x+2\right)x^2\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+3x-2\right)-2x^2\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+3x-2-2x^2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\-x^2+3x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\-x^2+x+2x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\-x\left(x-1\right)+2\left(x-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\\left(x-1\right)\left(-x+2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\\left[{}\begin{matrix}x-1=0\\-x+2=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\end{matrix}\right.\)

Vậy \(S=\left\{-2;2;1\right\}\)

\(b,9x^2-\left(6x+2\right)\left(x-5\right)=1\)

\(\Leftrightarrow9x^2-\left(6x^2-30x+2x-10\right)-1=0\)

\(\Leftrightarrow9x^2-6x^2+30x-2x+10-1=0\)

\(\Leftrightarrow3x^2+28x+9=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-9\end{matrix}\right.\)

Vậy \(S=\left\{-\dfrac{1}{3};-9\right\}\)

\(c,\dfrac{x}{3x-2}-\dfrac{x}{2+3x}=\dfrac{6x^2}{9x^2-4}\left(dkxd:x\ne\pm\dfrac{2}{3}\right)\)

\(\Leftrightarrow\dfrac{x}{3x-2}-\dfrac{x}{3x+2}-\dfrac{6x^2}{\left(3x-2\right)\left(3x+2\right)}=0\)

\(\Leftrightarrow\dfrac{x\left(3x+2\right)-x\left(3x-2\right)-6x^2}{\left(3x-2\right)\left(3x+2\right)}=0\)

\(\Leftrightarrow3x^2+2x-3x^2+2x-6x^2=0\)

\(\Leftrightarrow4x-6x^2=0\)

\(\Leftrightarrow-2x\left(-2+3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x=0\\-2+3x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tmdk\right)\\x=\dfrac{2}{3}\left(ktmdk\right)\end{matrix}\right.\)

Vậy \(S=\left\{0\right\}\)

YangSu
19 tháng 6 2023 lúc 20:16

Bài 1 :

\(a,P=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right)\left(dkxd:x\ne0,x\ne\pm1\right)\)

\(=\dfrac{x^2+x}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x\left(x-1\right)}\right)\)

\(=\dfrac{x^2+x}{\left(x-1\right)^2}:\left(\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\right)\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}.\dfrac{x\left(x-1\right)}{x+1}\)

\(=\dfrac{x^2}{x-1}\left(dpcm\right)\)

\(b,P=-\dfrac{1}{2}\Rightarrow\dfrac{x^2}{x-1}=-\dfrac{1}{2}\)

\(\Rightarrow2x^2=-\left(x-1\right)\)

\(\Rightarrow2x^2=-x+1\)

\(\Rightarrow2x^2+x-1=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-1\end{matrix}\right.\)

Vậy \(P=-\dfrac{1}{2}\) thì \(x=\dfrac{1}{2};x=-1\)

\(c,\) Để P nhận giá trị nguyên dương thì \(P\ge0\)

\(\Leftrightarrow\dfrac{x^2}{x-1}\ge0\Leftrightarrow x\ge0\)

Nguyễn Lê Phước Thịnh
19 tháng 6 2023 lúc 20:02

1:

a: =>x^3+3x^2-2x+2x^2+6x-4=2x^3+4x^2

=>2x^3+4x^2=x^3+5x^2+4x-4

=>x^3-x^2-4x+4=0

=>(x-1)(x-2)(x+2)=0

=>x=1;x=2;x=-2

b: =>9x^2-6x^2+30x-2x+10=1

=>3x^2+28x+9=0

=>(x+9)(3x+1)=0

=>x=-1/3;x=-9

c: =>x(3x+2)-x(3x-2)=6x^2

=>6x^2=3x^2+2x-3x^2+2x=4x

=>2x(3x-2)=0

=>x=2/3(loại); x=0(nhận)


Các câu hỏi tương tự
NGUYỄN QUỐC KHÁNH
Xem chi tiết
votuananh
Xem chi tiết
votuananh
Xem chi tiết
Nguyễn Anh Dũng An
Xem chi tiết
Achau14056
Xem chi tiết
Rinn
Đặng Minh Dương
em hok rốt cần ôn
Xem chi tiết