Hàm số y = x 3 − 3 x 2 + m có giá trị cực đại và giá trị cực tiểu trái dấu nhau khi
A. m < 0
B. m > 4
C. 0 ≤ m ≤ 4
D. 0 < m < 4
Cho hàm số y = x 3 - 3 x 2 - m . Tìm m để hàm số có giá trị cực đại và giá trị cực tiểu trái dấu nhau.
A. m > 0 hoặc m < - 4
B. 0 < m < 4
C. - 4 < m < 0
D. m > 4 hoặc m < 0
Cho hàm số y = x 3 − 3 x 2 − m . Tìm m để hàm số có giá trị cực đại và giá trị cực tiểu trái dấu nhau.
A. 0 < m < 4
B. m > 4 hoặc m < 0
C. m > 0 hoặc m < - 4
D. − 4 < m < 0
Xét các khẳng định sau:
(I). Nếu hàm số y = f(x) có giá trị cực đại là M và giá trị cực tiểu là m thì M > m
(II). Đồ thị hàm số y = a x 4 + b x 2 + c ( a ≠ 0 ) luôn có ít nhất một điểm cực trị
(III). Tiếp tuyến (nếu có) tại một điểm cực trị của đồ thị hàm số luôn song song với trục hoành.
Số khẳng định đúng là :
A. 0
B. 3
C. 2
D. 1
Cho đồ thị hàm số y = a x 3 + b x 2 + c x + d có điểm cực đại là A(-2;2), điểm cực tiểu là B(0;-2). Tìm tất cả các giá trị của m để phương trình a x 3 + b x 2 + c x + d = m có 3 nghiệm phân biệt.
A. m > 2
B. m < - 2
C. - 2 < m < 2
D. m = 2 m = - 2
Cho hàm số y = - x 3 + 3 x 2 + 3 ( m 2 - 1 ) x - 3 m 2 - 1 . Có bao nhiêu giá trị nguyên của m để đồ thị hàm số có điểm cực đại và điểm cực tiểu nằm bên trái đường thẳng x=2
A. 3
B. 1
C. 2
D. 0
Tìm các giá trị của m để hàm số y = x - m 3 - 3 x để hàm số cực tiểu tại điểm x = 0
A. m = 1
B. m = -1
C. m = 0
D. m = ∅
Đồ thị hàm số y = - x 3 + 3 m x 2 - 3 m - 1 có cực đại và cực tiểu đối xứng nhau qua đường thẳng d: x+8y-74=0 khi m bằng:
A. 1
B. -2
C. -1
D. 2
Giá trị của m để hàm số y = 1 3 x 3 − m − 1 x 2 + m 2 − 3 m + 2 x + 5 đạt cực đại tại x = 0 ?
A. m = 1
B. m = 1 hoặc m = 2
C. m = 6
D. m = 2