Cho các mệnh đề :
1) Hàm số y=f(x) có đạo hàm tại điểm x 0 thì nó liến tục tại x 0 .
2) Hàm số y=f(x) liên tục tại x 0 thì nó có đạo hàm tại điểm x 0 .
3) Hàm số y=f(x) liên tục trên đoạn [a;b] và f(a).f(b)<0 thì phương trình f(x) có ít nhất một nghiệm trên khoảng (a;b).
4) Hàm số y=f(x) xác định trên đoạn [a;b] thì luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.
Số mệnh đề đúng là:
A. 2
B. 4
C. 3
D. 1
Cho hàm số f ( x ) x - x + 2 x 2 - 4 n ế u x > 2 x 2 + 3 b n ế u x < 2 2 a + b - 6 n ế u x = 2 liên tục tại x=2 Tính l = a + b
A. I= 19 30
B. I= - 93 16
C. 19 32
D. I= - 173 16
Cho a, b là các số thực và hàm số f x = x − a − 1 x 2 − 4 k h i x ≠ 2 2 x − b k h i x = 2 liên tục tại x = 2. Tính giá trị của biểu thức T=a+b.
A. T = 31 8
B. T = 5
C. T = 3
D. T = 39 8
Cho hàm số f ( x ) = x 2 − 1 , k h i x ≥ 2 3 x + a , k h i x < 2 . Tìm a để f(x) liên tục tại x = 2
A. a = 3
B. a = 2
C. a = =-3
D. a = -2
Cho hàm số f x = x 2 + 4 − 2 x 2 k h i x ≠ 0 2 a − 5 4 khi x = 0 . Tìm giá trị thực của tham số a để hàm số f(x) liên tục tại x = 0
A. a = - 3 4
B. a = 4 3
C. a = - 4 3
D. a = 3 4
Tìm tham số thực m để hàm số y = f ( x ) = x 2 + x - 12 x + 4 k h i x k h a c - 4 m x + 1 k h i x = - 4 liên tục tại điểm x=-4
A. m=4
B. m=3
C. m=2
D. m=5
Cho hàm số f x = x − x + 2 x 2 − 4 , x > 2 x 2 + a x + 3 b , x < 2 2 a + b − 6 , x = 2 liên tục tại x = 2. Tính I = a + b ?
A. I = 19 30
B. I = − 93 16
C. I = 19 32
D. I = − 173 16
Trong tất cả các số thực a để hàm số y = f ( x ) = x + 3 − 5 − x x 2 − 1 k h i x ≠ 1 1 2 sin a x k h i x = 1 liên tục tại x = 1. Tìm số âm a lớn nhất.
A. − π 6
B. − 7 π 6
C. − 5 π 6
D. − 11 π 6
Cho hàm số f ( x ) = 3 x − 5 , x ≤ − 2 a x − 1 , x > − 2 . Với giá trị nào của a thì hàm số f(x) liên tục tại x=-2?
A. a = -5
B. a = 0
C. a = 5
D. a = 6