Mình xin phép sửa lại một chút nha bạn:
Gọi thời gian người thứ hai hoàn thành công việc khi làm một mình là y(giờ)(ĐK: y>0)
Gọi thời gian người thứ nhất hoàn thành công việc khi làm một mình là x(giờ)(ĐK: x>0)
Trong 1 giờ, người thứ nhất làm được: \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, người thứ hai làm được \(\dfrac{1}{y}\)(công việc)
Trong 1 giờ, hai người làm được \(\dfrac{1}{12}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\)
Trong 7 giờ người thứ nhất làm được \(7\cdot\dfrac{1}{x}=\dfrac{7}{x}\)(công việc)
Trong 4 giờ người thứ hai làm được \(4\cdot\dfrac{1}{y}=\dfrac{4}{y}\)(công việc)
Khi người thứ nhất làm trong 7 giờ và người thứ hai làm trong 4 giờ thì hai người làm được một nửa công việc nên ta có:
\(\dfrac{7}{x}+\dfrac{4}{y}=\dfrac{1}{2}\)
Do đó, ta có hệ phương trình sau:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{7}{x}+\dfrac{4}{y}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{7}{x}+\dfrac{7}{y}=\dfrac{7}{12}\\\dfrac{7}{x}+\dfrac{4}{y}=\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3}{y}=\dfrac{7}{12}-\dfrac{1}{2}=\dfrac{1}{12}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=36\\\dfrac{1}{x}+\dfrac{1}{36}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=36\\\dfrac{1}{x}=\dfrac{1}{12}-\dfrac{1}{36}=\dfrac{1}{18}\end{matrix}\right.\)
=>x=18 và y=36
Vậy: Người thứ hai cần 36 giờ để hoàn thành công việc khi làm một mình
Bạn Thịnh sai ở chỗ giải hệ phương trình
7/x + 7/y = 7/12 (không phải 1/12)
Gọi thời gian người thứ hai hoàn thành công việc khi làm một mình là y(giờ)(ĐK: y>0)
Gọi thời gian người thứ nhất hoàn thành công việc khi làm một mình là x(giờ)(ĐK: x>0)
Trong 1 giờ, người thứ nhất làm được: \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, người thứ hai làm được \(\dfrac{1}{y}\)(công việc)
Trong 1 giờ, hai người làm được \(\dfrac{1}{12}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\)
Trong 7 giờ người thứ nhất làm được \(7\cdot\dfrac{1}{x}=\dfrac{7}{x}\)(công việc)
Trong 4 giờ người thứ hai làm được \(4\cdot\dfrac{1}{y}=\dfrac{4}{y}\)(công việc)
Khi người thứ nhất làm trong 7 giờ và người thứ hai làm trong 4 giờ thì hai người làm được một nửa công việc nên ta có:
\(\dfrac{7}{x}+\dfrac{4}{y}=\dfrac{1}{2}\)
Do đó, ta có hệ phương trình sau:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{7}{x}+\dfrac{4}{y}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{7}{x}+\dfrac{7}{y}=\dfrac{1}{12}\\\dfrac{7}{x}+\dfrac{4}{y}=\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3}{y}=\dfrac{1}{12}-\dfrac{1}{2}=\dfrac{-5}{12}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-\dfrac{36}{5}< 0\left(loại\right)\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\)
Do đó: Đề sai rồi bạn!