ĐKXĐ: \(x\ge-2021\)
\(\sqrt{x+2021+2\sqrt{x+2021}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x+2021}+1\right)^2}=2\)
\(\Leftrightarrow\sqrt{x+2021}+1=2\)
\(\Leftrightarrow\sqrt{x+2021}=1\)
\(\Leftrightarrow x=-2020\)
ĐKXĐ: \(x\ge-2021\)
\(\sqrt{x+2021+2\sqrt{x+2021}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x+2021}+1\right)^2}=2\)
\(\Leftrightarrow\sqrt{x+2021}+1=2\)
\(\Leftrightarrow\sqrt{x+2021}=1\)
\(\Leftrightarrow x=-2020\)
Tìm GTNN bt:A=\(\dfrac{2020x+2021\sqrt{1-x^2}+2022}{\sqrt{1-x^2}}\)
so sánh
\(\sqrt{2021}-\sqrt{2020}\) và \(\sqrt{2022}-\sqrt{2021}\)
\(\sqrt{2022}-\sqrt{2020}\) và \(\sqrt{2020}-\sqrt{2018}\)
Cho \(B=2\left(4x^5+4x^4-5x^3+2x-2\right)^{2021}+2022\) Tính giá trị của B tại \(x=\dfrac{-1-\sqrt{5}}{2}\)
Gpt: \(2x+2\sqrt{x^2+5x}+\sqrt{x+5}+\sqrt{x}=25\)
\(\sqrt{1+\dfrac{1}{1^2}+\dfrac{1}{2^2}}\)+\(\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}\)+.........+\(\sqrt{1+\dfrac{1}{2021^2}+\dfrac{1}{2022^2}}\)
GPT
\(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2.\)
GPT : \(\sqrt{\sqrt{x}+1-2\sqrt[4]{x}}+\sqrt{\sqrt{x}+9-6\sqrt[4]{x}}=2\)
Giải phương trình : \(\sqrt{x^2-2020x+2019}+\sqrt{x^2-2021+2020}=2\sqrt{x^2-2022x+2021}\)
Gpt: \(x^2+2\sqrt{x-1}-2x\sqrt{2-x}+1=0\)
Gpt \(1-\sqrt{2\left(x^2-x+1\right)}=x-\sqrt{x}\)