Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=-1\end{matrix}\right.\)
Ta có: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}\)
\(=\dfrac{x_1+x_2}{x_1x_2}\)
\(=\dfrac{5}{-1}=-5\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=-1\end{matrix}\right.\)
Ta có: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}\)
\(=\dfrac{x_1+x_2}{x_1x_2}\)
\(=\dfrac{5}{-1}=-5\)
6 Gọi \(x_1,x_2\) là 2 nghiệm của pt \(x^2-x-3=0\) .Không giải pt hãy tính giá trị của các biểu thức sau:
a. A=\(x_1^2+x_2^2\)
b. B=\(x_1^2x_2+x_1x_2^2\)
c. C=\(\dfrac{1}{x_1}+\dfrac{1}{x_2}\)
d. D=\(\dfrac{x_2}{x_1}+\dfrac{x_1}{x_2}\)
Gọi
x1,x2 là hai nghiệm của pt \(x^2-2x-1=0\) tính giá trị của các biểu thức:
A=\(x_1^2+x_2^2\)
B=\(x_1^3+x_2^3\)
C=\(x_1^4+x_2^4\)
D=\(x_1^2.x_2+x_2^2.x_1\)
E=\(\dfrac{x_1^2}{x_2}+\dfrac{x_2^2}{x_1}\)
F=\(\left|x_1-x_2\right|\)
G=\(\dfrac{x_1}{x_2+1}+\dfrac{x_2}{x_1+1}\)
H=\(\left(x_1+\dfrac{2}{x_2}\right)\left(x_2+\dfrac{2}{x_1}\right)\)
Cho phương trình \(x^2-ax+a-1=0\) có hai nghiệm \(x_1,x_2\)
\(a\)) Không giải phương trình, hãy tính giá trị của biểu thức: \(M=\dfrac{3x_1^2+3x_2^2-3}{x_1^2x_2+x_1x_2^2}\)
\(b\)) Tìm giá trị của \(a\) để: \(P=x_1^2+x_2^2\) đạt giá trị nhỏ nhất.
Cho phương trình \(x^2-\left(2m-1\right)x+2m-2=0\)
Gọi \(x_1\),\(x_2\) là 2 nghiệm của phương trình. Tìm giá trị của m để biểu thức \(A=x_1^2+x_2^2\) đạt giá trị nhỏ nhất.
Cho phương trình: 20x2 + 5x - 2020 =0
Không giải phương trình trên, hãy tính giá trị của biểu thức sau: A= \(\dfrac{x_1}{x_2}\)(1-x2)+\(\dfrac{x_2}{x_1}\)(1-x1)
\(x^2-2mx-m^2-1=0\) (1)
a) Giải phương trình (1) khi `m = 2`
b) Tìm giá trị của tham số m để phương trình (1) có 2 nghiệm \(X_1;X_2\) thỏa mãn:
\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=-\dfrac{5}{2}\)
Cho phương trình \(x^2-2\left(m+1\right)x+m^2-3=0\)
a, Tìm m để hai nghiệm \(x_1,x_2\) của phương trình thỏa mãn đẳng thức \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+\dfrac{1}{x_1x_2}=3\)
Xác định các giá trị của m để phương trình \(x^2-x+1-m=0\) có 2 nghiệm thực \(x_1,x_2\) thỏa mãn đẳng thức \(5\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+4=0\)
cho phương trình : \(2x^2-\left(m+3\right)x+m=0\) (1)
a, chứng tỏ phương trình (1) có nghiệm với mọi giá trị của m
b, gọi \(x_1,x_2\) là các nghiệm của phương trình (1).Tìm giá trị nhỏ nhất của biểu thức sau A= trị tuyệt đối của \(x_1-x_2\)