Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số f ( x ) = 2 x 3 + 3 x 2 - 1 trên đoạn - 2 ; - 1 2 . Tính P=M-m.
A. P=-5
B. P=1
C. P=5
D. P=4
Cho hàm số y=f(x) liên tục, không âm trên R thỏa mãn f ( x ) . f ' ( x ) = 2 x f ( x ) 2 + 1 và f(0)=0. Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y=f(x) trên đoạn [1;3] lần lượt là:
A. M=20;m=2
B. M = 4 11 ; m = 3
C. M = 20 ; m = 2
D. M = 3 11 ; m = 3
Cho hàm số f ( x ) = x 3 - 3 x . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=|f(sinx+1)+2|. Giá trị biểu thức M + m bằng
A. 4.
B. 6.
C. 2.
D. 8.
Cho hàm số y = m x + 1 2 x − 1 (m là tham số, m ≠ 2 ). Gọi a, b lần lượt giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên 1 ; 3 . Khi đó có bao nhiêu giá trị của m để a . b = 1 5 .
A. 0
B. 2
C. 1
D. 3
Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x 2 - 1 x - 2 trên tập hợp D = - ∞ ; 1 ∪ 1 ; 3 2 . Tính P = M + m ?
A. P = 2
B. P = 0
C. P = - 5
D. P = 3
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số f x = x + 1 x − 1 trên đoạn 3 ; 5 . Khi đó M − m bằng
A. 1 2
B. 7 2
C. 2
D. 3 8
Cho hàm số y=f(x) có đạo hàm xác định trên tập R / - 1 và đồ thị hàm số y=f(x) như hình vẽ. Gọi m, M lần lượt là giá trị nhỏ nhất và giá trị nhỏ nhất của hàm số y=f(sin2x) trên 0 ; π 2 . Tính P=m.M
A. P=0
B. P=8
C. P=12
D. P=4
Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số y = 1 − x − 2 x 2 x + 1 . Khi đó giá trị của M − m là
A. –2.
B. 2.
C. –1.
D. 1.
Gọi M,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số f(x) = x 2 - 16 x trên đoạn [-4;-1]. Tính T = M + m.
A. T = 32.
B. T = 16.
C. T = 37.
D. T = 25.
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x 2 - 1 x - 2 trên tập D= - ∞ ; - 1 ∪ [1;3/2]. Tính giá trị T= m.M
A. T= 1/9
B. T= 3/2
C. T= 0
D. T= -3/2