a: góc BPM+góc BRM=180 độ
=>BPMR nội tiếp
b: góc MPC=góc MQC=90 độ
=>MPQC nội tiếp
góc RPM+góc QPM
=góc RBM+góc 180 độ-góc QCM=180 độ
=>R,Q,P thẳng hàng
a: góc BPM+góc BRM=180 độ
=>BPMR nội tiếp
b: góc MPC=góc MQC=90 độ
=>MPQC nội tiếp
góc RPM+góc QPM
=góc RBM+góc 180 độ-góc QCM=180 độ
=>R,Q,P thẳng hàng
Cho tam giác ABC cố định nội tiếp đường tròn (O). Trên đường tròn lấy 2 điểm bất kì là M và N. Gọi H;I;K lần lượt là hình chiếu của M trên AB; BC; CA. Gọi D;E;F lần lượt là hình chiếu của N lên AB; BC; CA.
a) CMR: H;I;K thẳng hàng và D;E;F thẳng hàng ?
b) CMR: Đường thẳng chứa 3 điểm H;I;K và đường thẳng chứa 3 điểm D;E;F hợp với nhau 1 góc không đổi khi M;N chạy trên (O) ?
Cho tam giác ABC nhọn ( AB < AC) nội tiếp đường tròn tâm O, đường cao AH, gọi M và N lần lượt là hình chiếu của H trên cạnh AB và AC
a, Cm: Tứ giác AMHN nội tiếp đường tròn
b, tam giác AMN đồng dạng tam giác ACB
c, Đường thẳng NM cắt đường thằng BC tại Q. Gọi AQ cắt (O) tại điểm R khác điểm A và điểm I là tâm đường tròn ngoại tiếp tam giác MNB. Chứng minh QH^2 = QB.QC và ba điểm R, H, I thẳng hàng
cho tam giác ABC nội tiếp đường tròn (O;R), BC= Rcan3. M là điểm bất kì trên cung nhỏ BC. Gọi D,E,F lần lượt là hình chiếu của M lên AB,BC,CA.
a) Chứng minh 4 điểm B,D,E,M cùng thuộc một đường tròn
b) Tính diện tích hình viên phân tạo bởi cung nhỏ BC
Cho tam giác ABC vuông tại A (AB < AC) ngoại tiếp đường tròn tâm O. Gọi D,E,F lần lượt là tiếp điểm của (O) với các cạnh AB,AC,BC. Đường thẳng BO cắt các đường thẳng EF và DF lần lượt tại I và K.
2. Giả sử M là điểm di chuyển trên đoạn CE .
a. Khi AM = AB, gọi H là giao điểm của BM và EF. Chứng minh rằng ba điểm A,O,H thẳng hàng, từ đó suy ra tứ giác ABHI nội tiếp.
b. Gọi N là giao điểm của đường thẳng BM với cung nhỏ EF của (O), P, Q lần lượt là hình chiếu của N trên các đường thẳng DE và DF. Xác định vị trí điểm M để độ dài đoạn thẳng PQ max.
giúp mình với:
cho đường tròn (O) ngoại tiếp tam giác ABC với trực tâm H, M là một điểm bất kì trên cung BC không chứa A.
a) Xác định vị trí M để tứ giác BHCM là hình bình hành.
b) gọi các điểm đối xứng của M qua AB, AC lần lượt là N, E. chứng minh tứ giác AHBN, AHCE nội tiếp được.
c) chứng minh ba điểm N, H, E thẳng hàng.
Cho tam giác ABC nội tiếp đường tròn (O), D là 1 điểm trên cạnh BC. Gọi M,N lần lượt là trung điểm của các cạnh AB,AC. Đường thẳng MN cắt (O) tại các điểm P,Q (P,Q lần lượt thuộc cung AB và cung AC). Đường tròn ngoại tiếp tam giác BDP cắt AB tại I. Các đường thẳng DI và AC cắt nhau tại K.
a) C/m: AIPK nội tiếp và \(\frac{PK}{PD}=\frac{QB}{QA}\)
b) Đường thẳng CP cắt đường tròn ngoại tiếp tam giác BDP tại G. Đường thẳng IG cắt đường thẳng BC tại E. Cmr; Khi D di chuyển trên BC thì \(\frac{CD}{CE}\)không đổi
Cho tam giác ABC Nội tiếp (O) D là điểm bất kì trên (O) có hình chiếu xuống AB,BC,CA là M,N,P
CMR:
a, B,M,N,D cùng thuộc một đường tròn .
b, D,B,C,N cùng thuộc một đường tròn .
c, M,N,P thẳng hàng
Bài 1:
Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:
a) Góc AHN = ACB
b) Tứ giác BMNC nội tiếp.
c) Điểm I là trực tâm tam giác APQ.
Bài 2:
Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là điểm chính giữa của các cung nhỏ AC và BC. Các đường thẳng BN và AC cắt nhau tại I, các dây cung AN và BC cắt nhau ở P. Chứng minh:
a) Tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó.
b) KN là tiếp tuyến của đường tròn (O; R).
c) Chứng minh rằng khi C di động trên đường tròn (O;R) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định.
Cho tam giác ABC nội tiếp đường tròn (O), D là 1 điểm trên cạnh BC. Gọi M,N lần lượt là trung điểm các cạnh AB,AC. Đường thẳng MN cắt (O) tại các điểm P,Q (P,Q lần lượt thuộc cung AB và cung AC). Đường tròn ngoại tiếp tam giác BDP cắt AB tại I. Các đường thẳng DI và AC cắt nhau tại K.
a) C/m: Tứ giác AIPK nội tiếp và \(\frac{PK}{PD}=\frac{QB}{QA}\)
b) Đường thẳng CP cắt đường tròn ngoại tiếp tam giác BDP tại G (khác P). Đường thẳng IG cắt đường thẳng BC tại E. Cmr khi D di chuyển trên BC thì \(\frac{CD}{CE}\)không đổi.