cho tam giác ABC nội tiếp đường tròn (O;R), BC= Rcan3. M là điểm bất kì trên cung nhỏ BC. Gọi D,E,F lần lượt là hình chiếu của M lên AB,BC,CA.
a) Chứng minh 4 điểm B,D,E,M cùng thuộc một đường tròn
b) Tính diện tích hình viên phân tạo bởi cung nhỏ BC
Cho tam giác ABC. Gọi O là tâm đường tròn nội tiếp tam giác ABC. D và E lần lượt là tiếp điểm thuộc cạnh BC và CA. M và N lần lượt là hình chiếu của A và B xuống các đường thẳng BO và AO. Chứng minh D, N, M, E thẳng hàng
Cho tam giác ABC nhọn nội tiếp đường tròn (O). Trên cung nhỏ BC lấy điểm D bất kì (D ¹ B, C). Vẽ DM vuông góc với BC tại M . Vẽ DN vuông góc với AC tại N .
a) Chứng minh bốn điểm D, M, N, C cùng thuộc một đường tròn. b) Vẽ DK vuông góc với AB tại K . Chứng minh KD.CD = ND.BD.
c) Trên dây BCvẽ điểm E sao cho CDE= ADB. Tìm vị trí của điểm D trên cung nhỏ BC để
tổng DK + DN nhỏ nhất.
Cho tam giác ABC cố định nội tiếp đường tròn (O). Trên đường tròn lấy 2 điểm bất kì là M và N. Gọi H;I;K lần lượt là hình chiếu của M trên AB; BC; CA. Gọi D;E;F lần lượt là hình chiếu của N lên AB; BC; CA.
a) CMR: H;I;K thẳng hàng và D;E;F thẳng hàng ?
b) CMR: Đường thẳng chứa 3 điểm H;I;K và đường thẳng chứa 3 điểm D;E;F hợp với nhau 1 góc không đổi khi M;N chạy trên (O) ?
Cho tam giác ABC nhọn nội tiếp (O)Gọi M là mooyj điểm trên cung nhỏ BC (M khác B,C;AM không đi qua O). Giả sử P là một điểm thuộc đoạn thẳng AM sao cho đường tròn đường kính MP cắt cung nhỏ BC tại điểm N khác M
a)Gọi D là điểm đối xứng của M qua O.Chứng minh N,P,D thẳng hàng
b)Đường tròn đường kính MP cắt MD tại Q khác M.Chứng minh rằng P là tâm đường tròn nội tiếp tam giác PQR
Cho đường tròn (O) đường kính AB. Lấy điểm C thuộc đường tròn (O), với C khác A và B, biết CA < CB. Lấy điểm M thuộc đoạn OB, với M khác O và B. Đường thẳng đi qua điểm M vuông góc với AB cắt hai đường thẳng AC và BC lần lượt tại hai điểm D và H.
1) Chứng minh bốn điểm A, C, H, M cùng thuộc một đường tròn và xác định tâm của đường tròn này.
2) Chứng minh: MA.MB = MD.MH
3) Gọi E là giao điểm của đường thẳng BD với đường tròn (O), E khác B. Chứng minh ba điểm A, H, E thẳng hàng.
4) Trên tia đối của tia BA lấy điểm N sao cho MN = AB, Gọi P và Q tương ứng là hình chiếu vuông góc của điểm M trên BD và N trên AD.
Chứng minh bốn điểm D, Q, H, P cùng thuộc một đường tròn.
Cho đường tròn (O; R). Từ điểm A trên (O), kẻ tiếp tuyến d với (O). Trên đường thẳng d lấy điếm M bất kì (M khác A), kẻ cát tuyến MNP, gọi K là trung điểm NP, kẻ tiếp tuyến MB, kẻ AC ⊥ MB, BD ⊥ MA. Gọi H là giao điểm của AC và BD, I là giao điểm của OM và AB. Chứng minh:
a, Bốn điểm A, M, B, O cùng thuộc một đường tròn
b, Năm điểm O, K, A, M, B cùng thuộc một đường tròn
c, OI.OM = R 2 và OI.IM = I A 2
d, OAHB là hình thoi
e, O, H, M thẳng hàng
cho đường tròn (o) đường kính AB, gọi C là 1 điểm bất kì trên đường tròn (o) sao cho CA>CB. Vẽ hình vuông ACDE có đỉnh D nằm trên tia đối tia BC, đường chéo CE cắt đường tròn tại F. cmr
a. F là điểm chính giữa cung AB
b. Tam giác ABF vuông cân
c. Tia DE cắt tia BF tại M. Cm 4 điểm A,B,D,M cùng thuộc một đường tròn từ đó suy ra AM là tiếp tuyến của (o)
Bài 1: Cho nửa đường tròn (O) đường kính AB. Lấy điểm C trên đoạn AO, C khác A và O. Đường thẳng đi qua C vuông góc với AO cắt nửa đường tròn (O) tại D. M là điểm bất kì trên cung BD ( M khác B và D). Tiếp tuyến tại M của (O) cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.
a/ CM bốn điểm B,C,F,M cùng nằm trên một đường tròn.
b/ CM: EM = EF
c/ Gọi I là tâm đường tròn ngoại tiếp tam giác DMF. CM góc ABI có số đo không đổi khi M di động trên cung \(\widebat{BD}\)
Bài 2: Cho tam giác đều ABC nội tiếp trong đường tròn (O). Một đường thẳng d thay đổi đi qua A, cắt (O) tại điểm thứ hai là E, cắt hai tiêp tuyến kẻ từ B và C của đường tròn (O) lần lượt tại M và N sao cho A,M,N nằm ở cùng nửa mặt phẳng bờ BC. Gọi giao điểm của hai đường thẳng MC và BN tại F. CMR:
a/ Hai tam giác MBA và CAN dồng dạng và tích MB.CN không đổi.
b/ Tứ giác BMEF nội tiếp trong một đường tròn.
c/ Đường thẳng EF luôn đi qua một điểm cố định khi (d) thay đổi.