Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngô Phùng Thanh Tâm

loading...giúp tới với từ c6-20

HT.Phong (9A5)
12 tháng 7 2024 lúc 14:10

\(7)1-\dfrac{2}{3\cdot5}-\dfrac{2}{5\cdot7}-\dfrac{2}{7\cdot9}-...-\dfrac{2}{63\cdot65}\\ =1-\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+...+\dfrac{2}{63\cdot65}\right)\\ =1-\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{63}-\dfrac{1}{65}\right)\\ =1-\left(\dfrac{1}{3}-\dfrac{1}{65}\right)\\ =\dfrac{133}{195}\\ 8)\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{19\cdot21}\\ =\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{19\cdot21}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{19}-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}\cdot\dfrac{20}{21}\\ =\dfrac{10}{21}\)

Tui hổng có tên =33
12 tháng 7 2024 lúc 15:43

17) \(\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{20.22}\)
2B= \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{20}-\dfrac{1}{22}\)
2B= \(\dfrac{1}{2}-\dfrac{1}{22}\)   
2B= \(\dfrac{5}{11}\)
B = \(\dfrac{5}{11}:2\)
B= \(\dfrac{5}{11}.\dfrac{1}{2}\)
B= \(\dfrac{5}{22}\)

Tui hổng có tên =33
12 tháng 7 2024 lúc 15:44

Lần sau bn chú ý tách nhỏ bài ra cho dễ làm nhá bn, chứ nhìn vậy mn ngại làm lắm

Nguyễn Lê Phước Thịnh
8 tháng 8 2024 lúc 11:04

 

13: \(1+\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{10}+...+\dfrac{2}{45}\)

\(=1+\dfrac{4}{6}+\dfrac{4}{12}+...+\dfrac{4}{90}\)

\(=1+4\left(\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{90}\right)\)

\(=1+4\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)

\(=1+4\left(\dfrac{1}{2}-\dfrac{1}{10}\right)=1+4\cdot\dfrac{4}{10}\)

\(=1+\dfrac{16}{10}=\dfrac{26}{10}=\dfrac{13}{5}\)

14: \(\dfrac{1}{7}+\dfrac{1}{91}+\dfrac{1}{247}+\dfrac{1}{475}+\dfrac{1}{775}+\dfrac{1}{1147}\)

\(=\dfrac{1}{1\cdot7}+\dfrac{1}{7\cdot13}+\dfrac{1}{13\cdot19}+\dfrac{1}{19\cdot25}+\dfrac{1}{25\cdot31}+\dfrac{1}{31\cdot37}\)

\(=\dfrac{1}{6}\left(\dfrac{6}{1\cdot7}+\dfrac{6}{7\cdot13}+...+\dfrac{6}{31\cdot37}\right)\)

\(=\dfrac{1}{6}\left(1-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{13}+...+\dfrac{1}{31}-\dfrac{1}{37}\right)\)

\(=\dfrac{1}{6}\left(1-\dfrac{1}{37}\right)=\dfrac{1}{6}\cdot\dfrac{36}{37}=\dfrac{6}{37}\)

15: \(\dfrac{1}{2}-\dfrac{1}{99\cdot97}-\dfrac{1}{97\cdot95}-...-\dfrac{1}{5\cdot3}-\dfrac{1}{3\cdot1}\)

\(=\dfrac{1}{2}-\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{95\cdot97}+\dfrac{2}{97\cdot99}\right)\)

\(=\dfrac{1}{2}-\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)

\(=\dfrac{1}{2}-\dfrac{1}{2}\left(1-\dfrac{1}{99}\right)=\dfrac{1}{2}\left(1-1+\dfrac{1}{99}\right)=\dfrac{1}{2}\cdot\dfrac{1}{99}=\dfrac{1}{198}\)

16: \(\dfrac{1}{2}-\dfrac{1}{5\cdot11}-\dfrac{1}{11\cdot17}-\dfrac{1}{17\cdot23}-\dfrac{1}{23\cdot29}-\dfrac{1}{29\cdot35}\)

\(=\dfrac{1}{2}-\dfrac{1}{6}\left(\dfrac{6}{5\cdot11}+\dfrac{6}{11\cdot17}+...+\dfrac{6}{29\cdot35}\right)\)

\(=\dfrac{1}{2}-\dfrac{1}{6}\left(\dfrac{1}{5}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{17}+...+\dfrac{1}{29}-\dfrac{1}{35}\right)\)

\(=\dfrac{1}{2}-\dfrac{1}{6}\left(\dfrac{1}{5}-\dfrac{1}{35}\right)=\dfrac{1}{2}-\dfrac{1}{6}\cdot\dfrac{6}{35}=\dfrac{1}{2}-\dfrac{1}{35}=\dfrac{33}{70}\)

18: \(1-\dfrac{5}{5\cdot10}-\dfrac{5}{10\cdot15}-...-\dfrac{5}{95\cdot100}\)

\(=1-\left(\dfrac{5}{5\cdot10}+\dfrac{5}{10\cdot15}+...+\dfrac{5}{95\cdot100}\right)\)

\(=1-\left(\dfrac{1}{5}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{15}+...+\dfrac{1}{95}-\dfrac{1}{100}\right)\)

\(=1-\left(\dfrac{1}{5}-\dfrac{1}{100}\right)=1-\dfrac{19}{100}=\dfrac{81}{100}\)

19: \(\dfrac{1}{11}+\dfrac{1}{209}+\dfrac{1}{513}+\dfrac{1}{945}+\dfrac{1}{1505}+\dfrac{1}{2193}\)

\(=\dfrac{1}{11}+\dfrac{1}{11\cdot19}+\dfrac{1}{19\cdot27}+\dfrac{1}{27\cdot35}+\dfrac{1}{35\cdot43}+\dfrac{1}{43\cdot51}\)

\(=\dfrac{1}{11}+\dfrac{1}{8}\left(\dfrac{8}{11\cdot19}+\dfrac{8}{19\cdot27}+\dfrac{8}{27\cdot35}+\dfrac{8}{35\cdot43}+\dfrac{8}{43\cdot51}\right)\)

\(=\dfrac{1}{11}+\dfrac{1}{8}\left(\dfrac{1}{11}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{27}+...+\dfrac{1}{43}-\dfrac{1}{51}\right)\)

\(=\dfrac{1}{11}+\dfrac{1}{8}\left(\dfrac{1}{11}-\dfrac{1}{51}\right)=\dfrac{1}{11}+\dfrac{1}{8}\cdot\dfrac{40}{561}\)

\(=\dfrac{1}{11}+\dfrac{5}{561}=\dfrac{56}{561}\)

20: \(\dfrac{1}{2}+\dfrac{5}{6}+\dfrac{11}{12}+\dfrac{19}{20}+\dfrac{29}{30}+\dfrac{41}{42}+\dfrac{55}{56}+\dfrac{71}{72}+\dfrac{89}{90}\)

\(=\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{6}\right)+\left(1-\dfrac{1}{12}\right)+...+\left(1-\dfrac{1}{90}\right)\)

\(=9-\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{90}\right)\)

\(=9-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)

\(=9-\left(1-\dfrac{1}{10}\right)=9-1+\dfrac{1}{10}=\dfrac{81}{10}\)


Các câu hỏi tương tự
huyen6q3lt
Xem chi tiết
Xiao Lin
Xem chi tiết
Trần Văn Nghiệp
Xem chi tiết
Nguyễn Minh Đức
Xem chi tiết
Nguyễn Hoàng Nhật Anh
Xem chi tiết
Hoàng Bảo Châu
Xem chi tiết
Lê Ngọc Hà Anh
Xem chi tiết
Mint Mint
Xem chi tiết
Huỳnh Hoàng Ân
Xem chi tiết
Toi yeu chu cho Labrado
Xem chi tiết