\(A=\sqrt{7-\sqrt{48}}+\sqrt{13+\sqrt{48}}\)
\(=\sqrt{7-2.2\sqrt{3}}+\sqrt{13+2.2\sqrt{3}}\)
\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2\sqrt{3}+1\right)^2}\)
\(=2-\sqrt{3}+2\sqrt{3}+1=\sqrt{3}+3\)
Ta có: \(A=\sqrt{7-\sqrt{48}}+\sqrt{13+\sqrt{48}}\)
\(=2-\sqrt{3}+2\sqrt{3}+1\)
\(=3+\sqrt{3}\)