Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ryo Gamer

loading...  giúp mình với ạ

Nguyễn Lê Phước Thịnh
2 tháng 12 2023 lúc 9:07

Bài 1:

\(\overrightarrow{a}=\left(1;-2\right);\overrightarrow{b}=\left(2;3\right)\)

\(\overrightarrow{a}\cdot\overrightarrow{b}=1\cdot2+\left(-2\right)\cdot3=2-6=-4\)

Bài 2:

\(\overrightarrow{a}=\left(1;-2\right);\overrightarrow{b}=\left(3;4\right)\)

\(\left|\overrightarrow{a}\right|=\sqrt{1^2+\left(-2\right)^2}=\sqrt{5}\)

\(\left|\overrightarrow{b}\right|=\sqrt{3^2+4^2}=\sqrt{25}=5\)

Bài 3:

A(-1;0); B(4;-1)

\(AB=\sqrt{\left(4+1\right)^2+\left(-1-0\right)^2}\)

=>\(AB=\sqrt{5^2+1^2}=\sqrt{26}\)

Bài 4:

\(\overrightarrow{a}=\left(1;-2\right);\overrightarrow{b}=\left(3;-1\right)\)

\(\left|\overrightarrow{a}\right|=\sqrt{1^2+\left(-2\right)^2}=\sqrt{1+4}=\sqrt{5}\)

\(\left|\overrightarrow{b}\right|=\sqrt{3^2+\left(-1\right)^2}=\sqrt{9+1}=\sqrt{10}\)

\(cos\left(\overrightarrow{a},\overrightarrow{b}\right)=\dfrac{\overrightarrow{a}\cdot\overrightarrow{b}}{\left|\overrightarrow{a}\right|\cdot\left|\overrightarrow{b}\right|}=\dfrac{1\cdot3+\left(-2\right)\cdot\left(-1\right)}{\sqrt{10}\cdot\sqrt{5}}\)

\(=\dfrac{3+2}{5\sqrt{2}}=\dfrac{1}{\sqrt{2}}\)

=>\(\left(\overrightarrow{a},\overrightarrow{b}\right)=45^0\)

Bài 5:

\(\overrightarrow{a}=\left(1;2\right);\overrightarrow{b}=\left(2m+4;m\right)\)

Để \(\overrightarrow{a}\perp\overrightarrow{b}\) thì \(1\left(2m+4\right)+2m=0\)

=>4m+4=0

=>4m=-4

=>m=-1

Bài 6:

\(\overrightarrow{a}=\left(1;-2\right);\overrightarrow{c}=\left(3m^2-1;m\right)\)

Để \(\overrightarrow{a}\perp\overrightarrow{c}\) thì \(\overrightarrow{a}\cdot\overrightarrow{c}=0\)

=>\(1\left(3m^2-1\right)+\left(-2\right)\cdot m=0\)

=>\(3m^2-2m-1=0\)

=>\(3m^2-3m+m-1=0\)

=>(m-1)(3m+1)=0

=>\(\left[{}\begin{matrix}m-1=0\\3m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-\dfrac{1}{3}\end{matrix}\right.\)