\(\Leftrightarrow3^{x-1}\left(1+3+3^2\right)=39\\ \Leftrightarrow3^{x-1}\cdot13=39\\ \Leftrightarrow3^{x-1}=3=3^1\\ \Leftrightarrow x-1=1\Leftrightarrow x=2\)
\(\Leftrightarrow3^x\cdot\dfrac{13}{3}=39\)
\(\Leftrightarrow x=2\)
\(3^{x-1}+3^x+3^{x+1}=39\\ \Rightarrow3^x:3+3^x+3^x.3=39\\ \Rightarrow3^x.\dfrac{1}{3}+3^x+3^x.3=39\\ \Rightarrow3^x\left(\dfrac{1}{3}+1+3\right)=39\\ \Rightarrow3^x.\dfrac{13}{3}=39\\ \Rightarrow3^x=9\\ \Rightarrow3^x=3^2\\ \Rightarrow x=2\)