Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngô Phương Linh

Giúp mình bài này với ạ, chi tiết  càng tốt ạ <3

Nguyễn Lê Phước Thịnh
3 tháng 2 2023 lúc 20:58

a: Xét ΔBAC có BI/BA=BE/BC

nên EI//AC và EI=1/2AC

=>EI vuông góc AB

DE vuông góc AB tại trung điểm của DE

=>D đối xứng E qua AB

b: Xét tứ giác DECA co

DE//CA
DE=CA(=2EI)

Do đó: DECA là hình bình hành

c: Xét tứ giác ADBE có

I là trung điểm chung của AB và DE

EA=EB

=>ADBE là hình thoi

e: Để ADBE là hình vuông thì góc AEB=90 độ

=>góc ABC=45 độ

Tô Mì
3 tháng 2 2023 lúc 21:11

Bạn tự vẽ hình nhé.

a) Do \(E\) đối xứng với \(D\) qua \(I\), do đó \(I\) là trung điểm của \(DE\) hay \(ID=IE\).

Ta cũng có : \(E\) là trung điểm của \(BC\), \(I\) là trung điểm của \(AB\) ⇒ \(IE\) là đường trung bình của \(\Delta ABC\) ⇒ \(IE // AC\). Lại có : \(AB\perp AC\) (giả thiết), vì vậy, \(IE\perp AB\).

Từ đó, suy ra \(AB\) là đường trung trực của \(DE\) hay \(D\) đối xứng với \(E\) qua \(AB\) (điều phải chứng minh).

b) Do \(IE\) là đường trung bình của \(\Delta ABC\) (chứng minh trên) nên \(IE=\dfrac{1}{2}AC\) và \(IE//AC\). Mặt khác, \(IE=\dfrac{1}{2}DE\). Suy ra được \(\dfrac{1}{2}AC=\dfrac{1}{2}DE\) hay \(AC=DE\). Suy ra, \(ADEC\) là hình bình hành (điều phải chứng minh).

c) Do \(I\) là trung điểm của \(DE\) (chứng minh trên) và của \(AB\) (giả thiết), suy ra \(ADBE\) là hình bình hành. Lại có \(AB\perp DE\) (do \(AB\) là đường trung trực của \(DE\) (chứng minh trên)). Suy ra, \(ADBE\) là hình thoi.

Do \(ADBE\) là hình thoi nên \(AE=EB=BD=DA=10(cm)\). Do đó, chu vi của hình thoi \(ADBE\) là \(C=AE+EB+BD+DA=4AE=4.10=40\left(cm\right)\).

d) Để hình thoi \(ADBE\) là hình vuông thì \(\hat{E}=90^o\) hay \(AE\) là đường cao của \(\Delta ABC\). Mà \(AE\) lại là đường trung tuyến của \(\Delta ABC\) (do \(E\) là trung điểm của \(BC\)). Để điều đó xảy ra thì \(\Delta ABC\) phải thêm điều kiện cân tại \(A\).


Các câu hỏi tương tự
Phan Việt Hà
Xem chi tiết
LÂM 29
Xem chi tiết
Linh Bông
Xem chi tiết
An Vũ
Xem chi tiết
Minh Qúy
Xem chi tiết
Trần Thanh Tố Như
Xem chi tiết
An Vũ
Xem chi tiết
Ngọc Linh Hoàng
Xem chi tiết
Ngọc Linh Hoàng
Xem chi tiết