\(1)x^2-4x+3=0\\ < =>\left(x^2-x\right)+\left(-3x+3\right)=0\\ < =>x\left(x-1\right)-3\left(x-1\right)=0\\ < =>\left(x-1\right)\left(x-3\right)=0\\ < =>\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy: ...
\(2)\sqrt{x+1}+\sqrt{x-1}\ge0\left(x\ge1\right)\)
Với \(x\ge1=>\left\{{}\begin{matrix}\sqrt{x+1}\ge0\forall x\\\sqrt{x-1}\ge0\forall x\end{matrix}\right.\)
\(=>\sqrt{x+1}+\sqrt{x-1}\ge0\forall x\)
=> Mệnh để đúng với mọi x ≥ 1










