a) \(A=\sqrt{\left(2-\sqrt{3}\right)^2}+2\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(A=\left|2-\sqrt{3}\right|+2\left|1+\sqrt{3}\right|\)
\(A=2-\sqrt{3}+2+2\sqrt{3}\)
\(A=4+\sqrt{3}\)
b) \(B=\dfrac{2}{\sqrt{5}-2}-\dfrac{11}{4+\sqrt{5}}\)
\(B=\dfrac{2\left(\sqrt{5}+2\right)}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}-\dfrac{11\left(4-\sqrt{5}\right)}{\left(4+\sqrt{5}\right)\left(4-\sqrt{5}\right)}\)
\(B=\dfrac{2\left(\sqrt{5}+2\right)}{5-4}-\dfrac{11\left(4-\sqrt{5}\right)}{16-5}\)
\(B=2\left(\sqrt{5}+2\right)-\dfrac{11\left(4-\sqrt{5}\right)}{11}\)
\(B=2\left(\sqrt{5}+2\right)-\left(4-\sqrt{5}\right)\)
\(B=2\sqrt{5}+4-4+\sqrt{5}\)
\(B=3\sqrt{5}\)
c) \(C=\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(C=\left(\dfrac{\sqrt{3}\left(2-\sqrt{2}\right)}{\sqrt{2}\left(2-\sqrt{2}\right)}-\dfrac{6\sqrt{6}}{3}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(C=\left(\dfrac{\sqrt{3}}{\sqrt{2}}-2\sqrt{6}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(C=-\dfrac{3\sqrt{6}}{2}\cdot\dfrac{1}{\sqrt{6}}\)
\(C=-\dfrac{3\sqrt{6}}{2\sqrt{6}}\)
\(C=-\dfrac{3}{2}\)









giúp e vs ạ :<