\(\sqrt{x+1}=3x+7\) (ĐK: \(x\ge-1\))
\(\Leftrightarrow x+1=\left(3x+7\right)^2\)
\(\Leftrightarrow x+1=9x^2+42x+49\)
\(\Leftrightarrow x+1-9x^2-42x-49=0\)
\(\Leftrightarrow-9x^2-41x-48=0\)
Ta có: \(\Delta=\left(-41\right)^2-4\cdot-9\cdot-48=-48< 0\)
Vậy Pt vô nghiệm
\(\sqrt[]{x+1}=3x-7\Leftrightarrow\left\{{}\begin{matrix}3x-7\ge0\\x+1=\left(3x-7\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{7}{3}\\x+1=9x^2-42x+49\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{7}{3}\\9x^2-43x+48=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Rightarrow\Delta=1849-1728=121\Rightarrow\sqrt[]{\Delta}=11\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{43+11}{2.9}=3\\x_2=\dfrac{43-11}{2.9}=\dfrac{32}{18}=\dfrac{16}{9}\end{matrix}\right.\)
so với điều kiện \(x\ge\dfrac{7}{3}\)
\(\Rightarrow x=3\)