\(ĐKXĐ:\)\(x\ne-2;\)\(x\ne-3;\)\(x\ne-4\)
\(x+\frac{x}{x+2}+\frac{x+3}{x^2+5x+6}+\frac{x+4}{x^2+6x+8}=1\)
\(\Leftrightarrow\)\(x+\frac{x}{x+2}+\frac{x+3}{\left(x+2\right)\left(x+3\right)}+\frac{x+4}{\left(x+2\right)\left(x+4\right)}=1\)
\(\Leftrightarrow\)\(x+\frac{x}{x+2}+\frac{1}{x+2}+\frac{1}{x+2}=1\)
\(\Leftrightarrow\)\(\frac{x\left(x+2\right)+x+1+1}{x+2}=1\)
\(\Leftrightarrow\)\(\frac{x^2+3x+2}{x+2}=1\)
\(\Leftrightarrow\)\(x^2+3x+2=x+2\)
\(\Leftrightarrow\)\(x\left(x+2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-2\left(L\right)\end{cases}}\)
Vậy pt có nghiệm \(x=0\)