\(\left(\sqrt{x+1}-\sqrt{x-2}\right)\left(1+\sqrt{x^2-x-2}\right)=3\left(DKXD:x\ge2\right)\)\(\Leftrightarrow\left(\sqrt{x+1}-\sqrt{x-2}\right)\left(\sqrt{x+1}+\sqrt{x-2}\right)\left(1+\sqrt{x\left(x-2\right)+\left(x-2\right)}\right)=3\left(\sqrt{x+1}+\sqrt{x-2}\right)\)\(\Leftrightarrow\left\{\left(x+1\right)-\left(x-2\right)\right\}\left(1+\sqrt{\left(x+1\right)\left(x-2\right)}\right)=3\left(\sqrt{x+1}+\sqrt{x-2}\right)\)
\(\Leftrightarrow3\left(1+\sqrt{\left(x+1\right)\left(x-2\right)}\right)=3\left(\sqrt{x+1}+\sqrt{x-2}\right)\)
\(\Leftrightarrow\sqrt{x+1}-\sqrt{\left(x+1\right)\left(x-2\right)}+\sqrt{x-2}-1=0\)
\(\Leftrightarrow-\left(\sqrt{x+1}-1\right)\left(\sqrt{x-2}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=1\\\sqrt{x-2}=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\left(loai\right)\\x=3\left(nhan\right)\end{cases}}}\)
Vậy...
Đặt \(\hept{\begin{cases}\sqrt{x+1}=a\\\sqrt{x-2}=b\end{cases}}\left(a,b\ge0\right)\) thì ta có
\(\hept{\begin{cases}a^2-b^2=3\left(1\right)\\\left(a-b\right)\left(1+ab\right)=3\left(2\right)\end{cases}}\)
Lấy (1) - (2) vế theo vế ta được
\(a^2-b^2-\left(a-b\right)\left(1+ab\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-1-ab\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(1-a\right)\left(b-1\right)=0\)
Với a = b
\(\Leftrightarrow\sqrt{x+1}=\sqrt{x-2}\)
\(\Leftrightarrow x+1=x-2\Leftrightarrow0x=3\left(l\right)\)
Với a = 1
\(\Leftrightarrow\sqrt{x+1}=1\Leftrightarrow x=0\left(l\right)\)
Với b = 1
\(\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x=3\)
Vậy PT có nghiệm là x = 3