Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nhi Quỳnh

Giải phương trình

\(\dfrac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)

\(x+\sqrt{2x+15}=0\)

Nguyễn Lê Phước Thịnh
22 tháng 12 2023 lúc 13:17

a: ĐKXĐ: \(\left\{{}\begin{matrix}2x-3>=0\\x-1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{3}{2}\\x>1\end{matrix}\right.\Leftrightarrow x>=\dfrac{3}{2}\)

\(\dfrac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)

=>\(\sqrt{\dfrac{2x-3}{x-1}}=2\)

=>\(\dfrac{2x-3}{x-1}=4\)

=>4(x-1)=2x-3

=>4x-4=2x-3

=>4x-2x=-3+4

=>2x=1

=>\(x=\dfrac{1}{2}\left(loại\right)\)

b: ĐKXĐ: 2x+15>=0

=>x>=-15/2

\(x+\sqrt{2x+15}=0\)

=>\(\sqrt{2x+5}=-x\)

=>\(\left\{{}\begin{matrix}-x>=0\\\left(-x\right)^2=2x+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{15}{2}< =x< =0\\x^2-2x-5=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{15}{2}< =x< =0\\\left(x-1\right)^2=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{15}{2}< =x< =0\\\left[{}\begin{matrix}x-1=\sqrt{6}\\x-1=-\sqrt{6}\end{matrix}\right.\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{15}{2}< =x< =0\\\left[{}\begin{matrix}x=\sqrt{6}+1\left(loại\right)\\x=-\sqrt{6}+1\left(nhận\right)\end{matrix}\right.\end{matrix}\right.\)