ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\-\dfrac{3}{2}\le x\le-1\end{matrix}\right.\)
\(\left(x^2+2x+1\right)+\left(2x+3-2\sqrt{2x+3}+1\right)+\sqrt{x^2-1}=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2+\sqrt{x^2-1}=0\)
Do \(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(\sqrt{2x+3}-1\right)^2\ge0\\\sqrt{x^2-1}\ge0\end{matrix}\right.\) với mọi x thuộc TXĐ
\(\Rightarrow\) Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(\sqrt{2x+3}-1\right)^2=0\\\sqrt{x^2-1}=0\end{matrix}\right.\) \(\Rightarrow x=-1\)
Vậy pt có nghiệm duy nhất \(x=-1\)