\(\Leftrightarrow x+1=\sqrt{x+1}\)
\(\Leftrightarrow\left(x+1\right)^2=x+1\)
\(=>x+1=\dfrac{x+1}{x+1}=1\)
\(=>x=1-1=0\)
`x-\sqrt{x+1}=-1` `ĐK: x >= -1`
`<=>x+1-\sqrt{x+1}=0`
`<=>(\sqrt{x+1})^2-\sqrt{x+1}=0`
`<=>\sqrt{x+1}(\sqrt{x+1}-1)=0`
`<=>` $\left[\begin{matrix} \sqrt{x+1}=0\\ \sqrt{x+1}=1\end{matrix}\right.$
`<=>` $\left[\begin{matrix} x+1=0\\ x+1=1\end{matrix}\right.$
`<=>` $\left[\begin{matrix} x=-1\\ x=0\end{matrix}\right.$ (t/m)
Vậy `S={-1;0}`