`\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\sqrt{x-1}(x>=1)`
`<=>\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=2\sqrt{x-1}`
`<=>\sqrt{(\sqrt{x-1}+1)^2}+\sqrt{(\sqrt{x-1}-1)^2}=2\sqrt{x-1}`
`<=>|\sqrt{x-1}+1|+|\sqrt{x-1}-1|=2\sqrt{x-1}`
`<=>\sqrt{x-1}+1+|\sqrt{x-1}-1|=2\sqrt{x-1}`
`<=>|\sqrt{x-1}-1|=\sqrt{x-1}-1`
`<=>\sqrt{x-1}-1>=0``
`<=>sqrt{x-1}>=1`
`<=>x-1>=1`
`<=>x>=2`
Vậy `S={x|x>=2}`