\(\sqrt{x-1}=x-3\) (điều kiện: \(x\ge3)\)
\(\left(\sqrt{x-1}\right)^2=\left(x-3\right)^2\)
\(x-1=x^2-6x+9\)
\(x^2-7x+10=0\)
(x-5)(x-2)=0
\(\Rightarrow\left[\begin{array}{l}x-5=0\Rightarrow x=5\left(TM\right)\\ x-2=0\Rightarrow x=2\left(KTM\right)\end{array}\right.\)
kết luận: x = 5
ĐKXĐ: x>=1
\(\sqrt{x-1}=x-3\)
=>\(\begin{cases}x-3\ge0\\ \left(x-3\right)^2=x-1\end{cases}\Rightarrow\begin{cases}x\ge3\\ x^2-6x+9-x+1=0\end{cases}\)
=>\(\begin{cases}x\ge3\\ x^2-7x+10=0\end{cases}\Rightarrow\begin{cases}x\ge3\\ \left(x-2\right)\left(x-5\right)=0\end{cases}\)
=>\(\begin{cases}x\ge3\\ x\in\left\lbrace2;5\right\rbrace\end{cases}\)
=>x=5