xem như pt bậc 2 ẩn x
x^2 + y^2 + 5(xy)^2 + 60 =37xy
<>(1+5y^2).x^2 -37xy + 60 + y^2 =0
denta = 37^2*y^2 - 4*(60+y^2)*(1+5y^2)
= -20y^4+165y^2- 240 >=0
=> 1 < y^2 <7 => y= +-2
với y= 2 => x = 2 thỏa mãn
với y =-2 => x =- 2 thỏa mãn
xem như pt bậc 2 ẩn x
x^2 + y^2 + 5(xy)^2 + 60 =37xy
<>(1+5y^2).x^2 -37xy + 60 + y^2 =0
denta = 37^2*y^2 - 4*(60+y^2)*(1+5y^2)
= -20y^4+165y^2- 240 >=0
=> 1 < y^2 <7 => y= +-2
với y= 2 => x = 2 thỏa mãn
với y =-2 => x =- 2 thỏa mãn
Giải phương trình nghiệm nguyên: 2x3+2x2y+x2+2xy=x+10
Giải phương trình nghiệm nguyên: x2+3y2+4xy-2x-6y=5
1) Tìm \(a\in Z\)để phương trình sau có nghiêm nguyên
x2-ax+a+2=0
2) Tìm các số nguyên x; y thỏa mãn đẳng thức
x2+y2+5x2y2+60=37xy
3)giải phương trình xy=3(x+y) với \(x;y\in Z\)
4)giải phương trình 2x-5y-6z=4 \(\left(x;y;z\in Z\right)\)
Bài 2. Phân tích đa thức thành nhân tử
a) 5x – 15y | b) 5x2y2 + 15x2y + 30xy2 |
c) x3 – 2x2y + xy2 – 9x | d) x(x2 – 1) + 3(x2 – 1) |
e) x2 – 10x + 25 | g) x2 – 64 |
h) (x + y)2 – (x2 – y2) | i) 5x2 + 5xy – x – y |
k) x2 – 25 + y2 + 2xy | l) 2xy – x2 – y2 + 16 |
m) (x – 2)(x – 3) + (x – 2) - 1 | n) 3(x – 1) + 5x( 1 – x) |
p) 12y(2x – 5) + 6xy(5 – 2x) | q) ax – 2x – a2 + 2a |
Bài 3. Phân tích đa thức thành nhân tử
a) a2 – b2 – 2a + 1 | b) x2 – 2x – 4y2 – 4y |
c) x2 + 4x – y2 + 4 | d) x4 – 1 |
e) x4 + x3 + x2 + x | g) a2 + 2ab + b2 – ac - bc |
Giải phương trình bằng phương pháp đưa về dạng ước số:
a) x2-x=y2-1
b) x2+12x=y2
c) x2+xy-2y-x-5=0
tìm các cặp số nguyên (x,y) thỏa mãn phương trình sau : x2 - y2= 2017
Giải pt nghiệm nguyên:
1. x2+y2=(x-y)(xy+2)+9
2. xy=p(x+y) với p là số nguyên tố
3. x3+y3=2022
Tìm tất cả các nghiệm nguyên của phương trình x5-2x4+2x2-(y2+3)x+2y2-2=0
Tìm nghiệm nguyên của phương trình sau x1^4+x2^4+...+x8^4= 2015