Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sherwin-William

giải phương trình undefined

mn giúp với ạ

 

Knight™
23 tháng 2 2022 lúc 8:55

a) \(\left(x-5\right)\left(2x+1\right)=0\)

\(\Rightarrow x-5=0\) hay \(2x+1=0\)

\(\Rightarrow x=5\)              \(2x=-1\)

\(\Rightarrow\)                        \(x=-\dfrac{1}{2}\)

Vậy : S = {5; \(-\dfrac{1}{2}\)}

b) \(\dfrac{2x+3}{2}-\dfrac{x-1}{3}=\dfrac{x+8}{6}\)

\(\Leftrightarrow\dfrac{3\left(2x+3\right)}{6}-\dfrac{2\left(x-1\right)}{6}=\dfrac{x+8}{6}\)

\(\Leftrightarrow3\left(2x+3\right)-2\left(x-1\right)=x+8\)

\(\Leftrightarrow6x+9-2x+2=x+8\)

\(\Leftrightarrow6x-2x-x=8-9-2\)

\(\Leftrightarrow3x=-3\)

\(\Leftrightarrow x=-1\)

Vậy : S = {-1}

ILoveMath đã xóa
Nguyễn Hoàng Tùng
23 tháng 2 2022 lúc 8:57

\(a,\left(x-5\right)\left(2x-1\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x-5=0\\2x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5\\x=\dfrac{1}{2}\end{matrix}\right.\)

\(b,\dfrac{2x+3}{2}-\dfrac{x+1}{3}=\dfrac{x+8}{6}\)

\(\Rightarrow\)\(\dfrac{6x+9}{6}-\dfrac{2x+2}{6}=\dfrac{x+8}{6}\)

\(\Rightarrow\)\(\dfrac{4x-7}{6}=\dfrac{x+8}{6}\Rightarrow4x-7=x+8\)

\(\Rightarrow3x=15\Rightarrow x=5\)

\(c,\dfrac{x-1}{x}+\dfrac{1}{x+1}=\dfrac{2x-1}{x^2+x}\)

\(\Rightarrow\)\(\dfrac{\left(x-1\right).\left(x+1\right)}{x\left(x+1\right)}+\dfrac{x}{x\left(x+1\right)}=\dfrac{2x-1}{x^2+x}\)

\(\Rightarrow\)\(\dfrac{x^2-1+x}{x^2+x}=\dfrac{2x-1}{x^2+x}\)

\(\Rightarrow x^2+x-1=2x-1\)

\(\Rightarrow x^2=x\Rightarrow x=0;1\)

ILoveMath đã xóa
ILoveMath
23 tháng 2 2022 lúc 8:57

\(a,\left(x-5\right)\left(2x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\2x+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{1}{2}\end{matrix}\right.\\ b,\dfrac{2x+3}{2}-\dfrac{x-1}{3}=\dfrac{x+8}{6}\\ \Leftrightarrow\dfrac{3\left(2x+3\right)}{6}-\dfrac{2\left(x-1\right)}{6}-\dfrac{x+8}{6}=0\\ \Leftrightarrow6x+9-2x+2-x-8=0\\ \Leftrightarrow3x+3=0\\ \Leftrightarrow x=-1\)

\(c,ĐKXĐ:\left\{{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\\ \dfrac{x-1}{x}+\dfrac{1}{x+1}=\dfrac{2x-1}{x^2+x}\\ \Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}+\dfrac{x}{x\left(x+1\right)}-\dfrac{2x-1}{x\left(x+1\right)}=0\)

\(\Rightarrow x^2-1+x-2x+1=0\\ \Leftrightarrow x^2-x=0\\ \Leftrightarrow x\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=1\left(tm\right)\end{matrix}\right.\)

Knight™
23 tháng 2 2022 lúc 9:00

c) \(\dfrac{x-1}{x}+\dfrac{1}{x+1}=\dfrac{2x-1}{x^2+x}\)

\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x-1\right)}{x^2+x}+\dfrac{x}{x^2+x}=\dfrac{2x-1}{x^2+x}\)

\(\Leftrightarrow\left(x+1\right)\left(x-1\right)+x=2x-1\)

\(\Leftrightarrow x^2-x+x-1+x-2x+1=0\)

\(\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow x\left(x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Bơ Ngố
23 tháng 2 2022 lúc 9:30

\(a,\left(x-5\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x-5=0\\2x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=5\\2x=-1\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=5\\x=-\dfrac{1}{2}\end{matrix}\right.\)

\(Vậy^{ }_{ }S=\left\{5;-\dfrac{1}{2}\right\}\)

\(b,\dfrac{2x+3}{2}-\dfrac{x-1}{3}=\dfrac{x+8}{6}\)

\(\Leftrightarrow\dfrac{\left(2x+3\right)3}{6}-\dfrac{x-1}{6}=\dfrac{x+8}{6}\)

\(\Leftrightarrow\left(2x+3\right)3-x-1=x+8\)

 

\(\Leftrightarrow6x+9-x-1=x+8\)

\(\Leftrightarrow6x-x-x=8-9+1\)

\(\Leftrightarrow4x=0\)

\(\Leftrightarrow x=0\)

\(Vậy\) \(S=\left\{0\right\}\)

\(c,\dfrac{x-1}{x}+\dfrac{1}{x+1}=\dfrac{2x-1}{x^2+x}\)

\(\Rightarrow\)\(\dfrac{\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}+\dfrac{1x}{x\left(x+1\right)}=\dfrac{2x-1}{x\left(x+1\right)}\)

Điều kiện xác định là:

\(x\left(x+1\right)\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne1\end{matrix}\right.\)

Vậy điều kiện x/đ là \(x\ne0\) và \(x\ne-1\)

\(\Leftrightarrow\left(x+1\right)\left(x-1\right)+1x=2x-1\)

\(\Leftrightarrow x^2-1+x=2x-1\)

\(\Leftrightarrow x^2-1+x-2x=-1\)

\(\Leftrightarrow x^2-1-x=-1\)

\(\Leftrightarrow x^2-1-x+1=0\)

\(\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy \(S=\left\{1\right\}\)


Các câu hỏi tương tự
Hoàng Thị Mỹ Linh
Xem chi tiết
Xuân Khang Phan
Xem chi tiết
Ỉn con
Xem chi tiết
Gia Hoàng Linh
Xem chi tiết
Tuyết Ly
Xem chi tiết
hà minh
Xem chi tiết
hà minh
Xem chi tiết
Phạm Phương Anh
Xem chi tiết
huong thanh
Xem chi tiết