\(tan\alpha=3\)
\(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\)
\(\Rightarrow cos\alpha=\pm\sqrt{\dfrac{1}{1+tan^2\alpha}}=\pm\sqrt{\dfrac{1}{1+3^2}}=\pm\dfrac{\sqrt{10}}{10}\)
\(\Rightarrow A\)
`tan a =3 <=> (sina)/(cosa) =3 <=> sina=3cosa`
Có: `sin^2a+cos^2a =1`
`<=> (3cosa)^2 + cos^2a =1`
`<=> 10cos^2a =1`
`<=> cosa = \pm \sqrt10/10`
`=>` A.