1: \(-70^0=\left(-\dfrac{70}{180}\right)\Omega=-\dfrac{7}{18}\Omega\)
\(\dfrac{\Omega}{12}=\dfrac{180^0}{12}=15^0\)
2: \(\dfrac{19\Omega}{6}=\dfrac{12\Omega}{6}+\dfrac{7\Omega}{6}=2\Omega+\dfrac{7}{6}\Omega\)
Biểu diễn:
3: \(cos^2\alpha+sin^2\alpha=1\)
=>\(sin^2\alpha=1-\left(-\dfrac{2}{3}\right)^2=\dfrac{5}{9}\)
mà \(sin\alpha>0\left(\dfrac{\Omega}{2}< \alpha< \Omega\right)\)
nên \(sin\alpha=\sqrt{\dfrac{5}{9}}=\dfrac{\sqrt{5}}{3}\)
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\sqrt{5}}{3}:\dfrac{-2}{3}=-\dfrac{\sqrt{5}}{2}\)
\(cot\alpha=1:\dfrac{-\sqrt{5}}{2}=-\dfrac{2}{\sqrt{5}}=-\dfrac{2\sqrt{5}}{5}\)
4: \(A=sin\left(\dfrac{\Omega}{2}-x\right)+cos\left(\dfrac{13\Omega}{2}-x\right)+cos\left(4\Omega-x\right)\)
\(=cosx+cos\left(\dfrac{\Omega}{2}-x\right)+cos\left(-x\right)\)
\(=cosx+cosx+sinx=2\cdot cosx+sinx\)