Giải
\(\dfrac{x}{y}=\dfrac{3}{4}\\ =>\dfrac{x}{3}=\dfrac{y}{4}\\ \dfrac{y}{z}=\dfrac{3}{5}\\ =>\dfrac{y}{3}=\dfrac{z}{5}\\\dfrac{x}{3}=\dfrac{y}{4}\\ =>\dfrac{x}{3.3}=\dfrac{y}{4.3}\\ =>\dfrac{x}{9}=\dfrac{y}{12}\\ \dfrac{y}{3}=\dfrac{z}{5}\\ =>\dfrac{y}{3.4}=\dfrac{z}{4.5}\\ =>\dfrac{y}{12}=\dfrac{z}{20}\\ =>\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)
Áp dụng tính chất dãy tỉ số =
\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}=\dfrac{2x-3y+z}{2.9-3.12+20}=\dfrac{6}{2}=3\\ =>\left\{{}\begin{matrix}x=3.9=27\\y=3.12=36\\z=3.20=60\end{matrix}\right.\)