Cho hàm số f x = a x + b c x + d với a , b , c , d ∈ R có đồ thị hàm số y=f'(x) như hình vẽ bên. Biết rằng giá trị lớn nhất của hàm số y=f(x) trên đoạn [-3;-2] bằng 8. Giá trị của f(2) bằng.
A. 2
B. 5
C. 4
D. 6
Cho các mệnh đề :
1) Hàm số y=f(x) có đạo hàm tại điểm x 0 thì nó liến tục tại x 0 .
2) Hàm số y=f(x) liên tục tại x 0 thì nó có đạo hàm tại điểm x 0 .
3) Hàm số y=f(x) liên tục trên đoạn [a;b] và f(a).f(b)<0 thì phương trình f(x) có ít nhất một nghiệm trên khoảng (a;b).
4) Hàm số y=f(x) xác định trên đoạn [a;b] thì luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.
Số mệnh đề đúng là:
A. 2
B. 4
C. 3
D. 1
tìm giá trị lớn nhất , nhỏ nhất trên \(\left[\frac{1}{4};4\right]\)của \(y=\frac{1}{3}log_{\frac{1}{2}}^3x+log^2_{\frac{1}{2}}x-\left(3log_{\frac{1}{2}}x\right)+1\)
Trong không gian Oxyz, cho mặt cầu ( S ) : ( x - 3 ) 2 + ( y - 1 ) 2 + ( z - 1 ) 2 = 4 và hai điểm A(-1;2;-3); B(5;2;3). Gọi M là điểm thay đổi trên mặt cầu (S). Tính giá trị lớn nhất của biểu thức 2 M A 2 + M B 2
A. 5
B. 123
C. 65
D. 112
Kí hiệu a,b lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số f(x)=sin2 x+2 sinx trên đoạn [0;3π/2]. Giá trị a+b bằng
A. 3 3 - 2 4
B. 3 3 + 2 2
C. 3 3 - 2 2
D. 3 3 - 4 2
Tích của giá trị nhỏ nhất và giá trị lớn nhất của hàm số f(x)=x+4/x trên đoạn [1;3] bằng.
A. 20.
B. 6.
C. 65/3.
D. 52/3.
Cho hàm số y = a x 3 + c x + d , a ≠ 0 có min − ∞ ; 0 f x = f − 2 . Giá trị lớn nhất của hàm số y = f(x)trên đoạn [ 1;3] bằng :
A. 8a + d
B. d - 16a
C. d - 11a
D. 2a + d
Giá trị lớn nhất của hàm số f ( x ) = x 3 + x trên đoạn [-2;-1] bằng
A. -6.
B. -2.
C. 6.
D. -10.
Cho các số thực dương x, y thỏa mãn log x + y x 2 + y 2 ≤ 1 .Giá trị lớn nhất của biểu thức A= 48 ( x + y ) 3 - 156 ( x + y ) 2 + 133 ( x + y ) + 4 là
A. 29.
B. 1369/36.
C. 30.
D. 505/36
Cho hàm số y = f ( x ) = x - m 2 x + 4 với m là số thực. Tìm giá trị lớn nhất của m để hàm số f(x) có giá trị nhỏ nhất trên [0;1] bằng -1
A. m = 2
B. m = 0
C. m 6
D. m = 3