Giả sử a,b là các số thực sao cho x 3 + y 3 = a 10 3 x + b 10 2 x đúng với mọi các số thực dương x, y, z thỏa mãn log ( x + y ) = z và log ( x 2 + y 2 ) = z + 1 . Giá trị của a+b bằng
A. -31/2
B. -25/2
C. 31/2
D. 29/2
Giả sử a,b là các số thực sao cho x 3 + y 3 = a . 10 3 x + b . 10 2 x đúng với mọi số thực dương x,y,z thỏa mãn log(x+y)=z và log x 2 + y 2 = z + 1 Giá trị của a+b bằng:
A. -31/2
B. -25/2
C. 31/2
D. 29/2
Giả sử a, b là các số thực sao cho x 3 + y 3 = a .10 3 x + b .10 2 x đúng với mọi số thực dương x, y, z thỏa mãn log x + y = z và log x 2 + y 2 = z + 1. Giá trị của a+b bằng:
A. − 31 2 .
B. − 25 2 .
C. 31 2 .
D. 29 2 .
Giả sử a, b là các số thực sao cho x 3 + y 3 = a .10 3 z + b .10 2 z đúng với mọi các số thực dương x, y, z thỏa mãn log x + y = z và log x 2 + y 2 = z + 1 . Giá trị của a + b bằng
A. - 31 2
B. - 25 2
C. 31 2
D. 29 2
Cho các số thực dương x, y, z và thỏa mãn x + y + z = 3. Biểu thức P = x 4 + y 4 + 8 z 4 đạt GTNN bằng a b , trong đó a, b là các số tự nhiên dương, a b là phân số tối giản. Tính a - b
A. 234.
B. 523.
C. 235.
D. 525.
Cho số phức z thỏa mãn
|z - 1 + 3i|+|z + 5 + i| = 2 65 Giá trị nhỏ nhất của
|z + 2 + i| đạt được khi z = a + bi với a,b là các số thực dương. Giá trị của 2 a 2 + b 2 bằng
A. 17
B. 33
C. 24
D. 36
Cho số phức z thỏa mãn z - 1 + 3 i + z ¯ + 5 + i = 2 65 . Giá trị nhỏ nhất của z + 2 + i đạt được khi z = a + b i với a, b là các số thực dương. Giá trị của 2 b + 3 a bằng
A. 19
B. 16
C. 24
D. 13
Cho các số thực x, y, z thỏa mãn điều kiện log 16 x + y + z 2 x 2 + 2 y 2 + 2 z 2 + 1 = x x - 2 + y y - 2 + z z - 2
. Tổng giá trị lớn nhất và nhỏ nhất của biểu thức F = x + y - z x + y + z bằng?
A. - 1 3
B. 2 3
C. - 2 3
D. 1 3
Cho x, y là các số thực thỏa mãn l o g 4 ( x + y ) + l o g 4 ( x - y ) ≥ 1 . Biết giá trị nhỏ nhất của biển thức P=2x-y là a b ( 1 < a , b ∈ Z ). Giá trị a 2 + b 2
A. a 2 + b 2 =18 x
B. a 2 + b 2 =8
C. a 2 + b 2 =13
D. a 2 + b 2 =20