ko biết mà cũng trả lời chia tay đi anh lêu lêu
ko biết mà cũng trả lời chia tay đi anh lêu lêu
Ghpt \(\left\{{}\begin{matrix}x^2+2y=xy+4\\x^2-x-3-x\sqrt{6-x}=\left(y-3\right)\sqrt{y-3}\end{matrix}\right.\)
GHPT: \(\hept{\begin{cases}2\left(x+y\right)=3\left(\sqrt[3]{x^2y}+\sqrt[3]{xy^2}\right)\\\sqrt[3]{x}+\sqrt[3]{y}=6\end{cases}}\)
CÂU 1 :\(\hept{\begin{cases}x^5+xy^4=x^{10}+y^6\\\sqrt{4x+5}+\sqrt{y^2+8}=6\end{cases}}\)
CÂU 2:\(\hept{\begin{cases}x^2\left(y^2+1\right)+2y\left(x^2+x+1\right)=3\\\left(x^2+x\right)\left(y^2+y\right)=1\end{cases}}\)
CÂU 3: \(\hept{\begin{cases}x^3-3x^2y+4y^3=\left(x-2y\right)^2\\\sqrt{x-2y}+\sqrt{3x+2y}=4x-4\end{cases}}\)
Giải hệ \(\left\{{}\begin{matrix}x^2+xy\left(2y-1\right)=2y^3-2y^2-x\\6\sqrt{x-1}+y+7=4x\left(y-1\right)\end{matrix}\right.\)
Giải hệ \(\left\{{}\begin{matrix}x^2+xy\left(2y-1\right)=2y^3-2y^2-x\\6\sqrt{x-1}+y+7=4x\left(y-1\right)\end{matrix}\right.\)
Giải các hệ phương trình :
a) \(\hept{\begin{cases}2x\left(x+1\right)\left(y+1\right)+xy=-6\\2y\left(y+1\right)\left(x+1\right)+yx=6\end{cases}x,y\inℝ}\)
b) \(\hept{\begin{cases}x^3+3x^2y-4y^3+x-y=0\\\left(x^2+3x+2\right)\left(y^2+7y+12\right)=24\end{cases}}\)
Giải hệ phương trình \(\left\{{}\begin{matrix}6\left(x+y\right)=8+2x-3y\\5\left(y-x\right)=5+3x+2y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x-1\right)\left(y-2\right)=\left(x+1\right)\left(y-3\right)\\\left(x-5\right)\left(y+4\right)=\left(x-4\right)\left(y+1\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x-2\right)\left(y+1\right)=xy
\\\left(x+8\right)\left(y-2\right)=xy\end{matrix}\right.\) GIÚP MÌNH VỚI Ạ MÌNH CẢM ƠN
Giải các hệ phương trình sau:
a)\(\int^{x^3+y^3=1}_{x^5+y^5=x^2+y^2}\)
b)\(\int^{3xy=4\left(x+y\right)}_{^{5yz=6\left(y+z\right)}_{7zx=8.\left(z+x\right)}}\)
Giải hệ phương trình: \(\hept{\begin{cases}\sqrt{2x^2y^2-x^4y^4}=y^6+x^2\left(1-x\right)\\\sqrt{1+\left(x+y\right)^2}+x\left(2y^3+x^2\right)\le0\end{cases}}\)