f(1)=a+b+c+d=a+3a+c+d=4a+c+d
f(-2)=-8a+4b-2c+d=-8a-2c+4*(3a+c)+d=4a+c+d
=>f(1)=f(-2)
f(1)=a+b+c+d=a+3a+c+d=4a+c+d
f(-2)=-8a+4b-2c+d=-8a-2c+4*(3a+c)+d=4a+c+d
=>f(1)=f(-2)
Cho f(x) = ax^3+ bx^2+ cx+ d, troq đó a,b,c,d thuộc Z và b= 3a+c. C/m rằng f(1). f(-2) là bình phươq của 1 số nguyên
Bài 1:
cho f(x)=ax^3+bx^2+cx+d và b=3a+c. CMR: f(1),f(-2) ko âm
Bài5*:Cho đa thức f(x)=ax³+bx²+cx+d:trong đó a,b,c,d thuộc Z HM=b=3a+c C/m: f(1).f(2) là số chính phương
Cho f(x)= ax^3 + bx^2 + cx + d, trong đó a, b, c, d là hằng số và thỏa mãn: b= 3a + c. Chứng tỏ rằng; f(1) = f(-2)
1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
cho F(x)=ax^3+bx^2+cx+d (a,b,c,d thuộc Z), b=3a+c
chứng minh F(1).F(-2) là bình phương của một số nguyên
Cho f(x) =ax3+bx2+cx+d, trong đóa,b,c,d là hằng số thỏa mãn b= 3a = c. Chứng tỏ rằng f(1) = f(-2)
cho f(x)=ax^3+bx^3+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1)*f|(-2) là bình phương của 1 số nguyên
Cho f(x)=ax3+bx2+cx+d trong đó a,b,c,d thuộc D và thỏa mãn b=3a+c. Chứng minh rằng f(1).f(2) là bình phương của 1 số nguyên