Cho hình nón có thể tích bằng 12 π và diện tích xung quanh bằng 15. Tính bán kính đáy của hình nón biết bán kính là số nguyên dương.
A. 4
B. 3.
C. 6
D. 5
Một hình nón có chiều cao S O = 50 c m và có bán kính đáy bằng 10 c m . Lấy điểm M thuộc đoạn SO sao cho O M = 20 c m . Một mặt phẳng qua M vuông góc với SO cắt hình nón theo giao tuyến là đường tròn C . Tính diện tích xung quanh của hình nón đỉnh S có đáy là hình tròn xác định bởi C (xem hình vẽ).
A. 16 π 26 c m 2
B. 26 π 26 c m 2
C. 36 π 26 c m 2
D. 46 π 26 c m 2
Cho hình nón (N) có chiều cao h = 4, bán kính đường tròn đáy r = 3. Diện tích xung quanh của hình nón (N) bằng:
A. 12 π
B. 20 π
C. 15 π
D. 30 π
Một khối trụ có thể tích bằng 25 π . Nếu chiều cao khối trụ tăng lên năm lần và giữ nguyên bán kính đáy thì khối trụ mới có diện tích xung quanh bằng 25. Bán kính đáy của khối trụ ban đầu là:
A. r = 10
B. r = 5
C. r = 2
D. r = 15
Cho khối nón cụt có R, r lần lượt là bán kính hai đáy và h = 3 là chiều cao. Biết thể tích khối nón cụt là V = π tìm giá trị lớn nhất của biểu thức P = R + 2r.
A. 2 3
B. 3
C. 3 3
D. 2
Tính diện tích xung quanh của hình nón có chiều cao h = 8 cm, bán kính đường tròn đáy r = 6 cm.
A. 120 π c m 2
B. 180 π c m 2
C. 360 π c m 2
D. 60 π c m 2
Cho hình nón đỉnh S, chiều cao SO=h, bán kính đáy bằng R. Gọi M là điểm nằm trên đoạn SO , đặtOM=x (0<x<h) Cắt hình nón bằng mặt phẳng (P) đi qua M và vuông góc với SO, thiết diện thu được là đường tròn (C). Tìm x để thể tích của khối nón đỉnh O đáy là hình tròn giới hạn bởi (C) đạt giá trị lớn nhất
A. x = h 2
B. x = h 3
C. x = h 4
D. x = h 5
Một hình nón có bán kính hình tròn đáy là R và chiều cao bằng 2R. Diện tích xung quanh của hình nón bằng
A. π R 2 1 + 5
B. π R 2 1 + 3
C. π R 2 3
D. π R 2 5
Một hình thang vuông ABCD có đường cao A D = π , đáy nhỏ A B = π , đáy lớn C D = 2 π . Cho hình thang đó quay quanh CD, ta được vật tròn xoay có thể tích bằng:
A. 4 3 π 4
B. 7 3 π 4
C. 10 3 π 4
D. 13 3 π 4