Chọn C.
Tiếp tuyến của (P) tại M(1;0) là d: y = 2x - 2
Phương trình hoành độ giao điểm x 2 - 1 = 2 x - 2 ⇔ x 2 - 2 x + 1 = 0 ⇔ x = 1 .
Chọn C.
Tiếp tuyến của (P) tại M(1;0) là d: y = 2x - 2
Phương trình hoành độ giao điểm x 2 - 1 = 2 x - 2 ⇔ x 2 - 2 x + 1 = 0 ⇔ x = 1 .
Diện tích S của hình phẳng giới hạn bởi đường P : y = 2 x 2 , parabol tiếp tuyến của (P) tại M (1;2) và trục Oy là
A. S = 1.
B. S = 2 3 .
C. S = 1 3 .
D. S = 1 2 .
Gọi S là diện tích của hình phẳng giới hạn bởi đồ thị (C) của hàm số y = x 4 + x 2 , trục hoành, trục tung và đường thẳng x = 1 . Biết S = a 5 + b , a , b ∈ ℚ . Tính a + b
A. a + b = - 1
B. a + b = 1 2
C. a + b = 1 3
D. a + b = 13 3
Gọi S là diện tích của hình phẳng giới hạn bởi parabol y = x 2 2 và đường tròn có tâm tại gốc tọa độ, bán kính bằng 2 2 . Biết S = a π + b c , trong đó a , b , c ∈ ℕ * , b , c = 1 . Tính tổng a + b + c .
A. 6
B. 7
C. 8
D. 9
Gọi S là diện tích của hình phẳng giới hạn bởi parabol y = x 2 2 và đường tròn có tâm tại gốc tọa độ, bán kính bằng 2 2 . Biết S = a π + b c , trong đó a , b , c ∈ ℕ * , ( b , c ) = 1 . Tính tổng a + b + c .
A. 6
B. 7
C. 8
D. 9
Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = x 3 - 1 và tiếp tuyến của đồ thị này tại điểm - 1 ; - 2
A. S = 4 27
B. S = 4 17
C. S = 17 4
D. S = 27 4
Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = x 3 - 1 và tiếp tuyến của đồ thị này tại điểm (-1; -2)
A. S = 4 27
B. S = 4 17
C. S = 17 4
D. S = 27 4
Tính diện tích S của hình phẳng giới hạn bởi đường parabol y = x 3 - 3 x + 2 và đường thẳng y=x-1.
A. S = 3 4
B. S = 2
C. S = 37 14
D. S = 799 300
Cho hàm số y = x − m 2 x + 1 (với m là tham số khác 0) có đồ thị là (C). Gọi S là diện tích hình phẳng giới hạn bởi đồ thị (C) và hai trục tọa độ. Có bao nhiêu giá trị thực của m thỏa mãn S = 1?
A. Hai
B. Ba
C. Một
D. Không
Cho hàm số y = x - m 2 x + 1 (với m là tham số khác 0) có đồ thị (C). Gọi S là diện tích hình phẳng giới hạn bởi đồ thị (C) và hai trục tọa độ. Có bao nhiêu giá trị thực của m thỏa mãn S = 1?
A. 0.
B. 1
C. 2
D. 3.