\(\dfrac{a-4\sqrt{a}+4}{\sqrt{a}-2}=\dfrac{\left(\sqrt{a}-2\right)^2}{\sqrt{a}-2}=\sqrt{a}-2\)
\(\dfrac{a-4\sqrt{a}+4}{\sqrt{a}-2}=\sqrt{a}-2\)
\(\dfrac{a-4\sqrt{a}+4}{\sqrt{a}-2}=\dfrac{\left(\sqrt{a}-2\right)^2}{\sqrt{a}-2}=\sqrt{a}-2\)
\(\dfrac{a-4\sqrt{a}+4}{\sqrt{a}-2}=\sqrt{a}-2\)
Cho biểu thức P= \(\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{2-\sqrt{a}}\) (với \(a\ge0;a\ne4\))
a) rút gọn biểu thức P.
b) tìm giá trị của a sao cho P=a+1.
Bài 3: Cho biểu thức:
\(A=\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{2}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\dfrac{10-x}{\sqrt{x}+2}\right)\) với \(x\ge0\) và \(x\ne4\)
a) Rút gọn A
b) Tìm giá trị của x để A > 0
Rút gọn: \(\dfrac{\sqrt{x}\left(16-\sqrt{x}\right)}{x-4}+\dfrac{3+2\sqrt{x}}{2-\sqrt{x}}-\dfrac{2-3\sqrt{x}}{\sqrt{x}+2}\) với \(x\ge0;x\ne4\)
cho 2 biểu thức
M=\(\dfrac{7}{\sqrt{3}-\sqrt{2}}-\sqrt{147}-2\sqrt{18}\) và N=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}-\dfrac{5\sqrt{x}+2}{x-4}\)(với \(x\ge0\)và \(x\ne4\))
a) rút gọn M và N
b Tình giá trị của x để \(N=M^2\)
\(\dfrac{a-4}{\sqrt{a+2}}vớia\ge0\)
Rút gọn
\(\dfrac{6}{\sqrt{5}+1}+\sqrt{\dfrac{2}{3-\sqrt{5}}}-\dfrac{10}{\sqrt{5}}\)
B1. Với \(x\ge0,x\ne4.Chobiểuthức\)
\(A=\dfrac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\dfrac{1}{2-\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
\(B=\dfrac{1}{x\sqrt{x}+27}\)
a, tính giá trị biểu thức khi B= 1/4
b, Rút gọn A
c, Tìm giá trị của x để A>1/2
d, Với C= B : A. Tìm GTLN C
Rút gọn biểu thức
a) \(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\left(\sqrt{a+\sqrt{b}}\right)^2-4\sqrt{ab}}.\dfrac{a-b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\) \(\left(đkxđ:a\ne b;a\ge0;b\ge0\right)\)
b) \(\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\dfrac{a-b}{\left(\sqrt{a}+\sqrt{b}\right)^2}\)\(\left(đkxđ:a\ne b;a\ge0;b\ge0\right)\)
HELP ME PLSSSSSSSSSS
Rút gọn B
B = \(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{x+2}{x-\sqrt{x}-2}\) (\(x\ge0\), \(x\ne4\))
Bài 3: Cho biểu thức: \(A=\dfrac{2x-3\sqrt{x}-2}{\sqrt{x}-2},\) với \(x\ge0\) và x \(\ne4\)
a) Rút gọn A rồi tìm giá trị của x để A \(\le5\)
b) Tìm các giá trị của x để \(\dfrac{A}{2}\) nhận giá trị nguyên