\(\dfrac{4}{x-2}\)-\(\dfrac{2\left(x-2\right)}{x-2}\) =0 ĐKXĐ:x-2\(\ne\) 0\(\Leftrightarrow\) x\(\ne\) 2
\(\Leftrightarrow\)4-[2x-4]=0
\(\Leftrightarrow\)4-2x+4=0
\(\Leftrightarrow\)2x=0
\(\Leftrightarrow\)x=0(tmđk)
\(\dfrac{4}{x-2}\)-\(\dfrac{2\left(x-2\right)}{x-2}\) =0 ĐKXĐ:x-2\(\ne\) 0\(\Leftrightarrow\) x\(\ne\) 2
\(\Leftrightarrow\)4-[2x-4]=0
\(\Leftrightarrow\)4-2x+4=0
\(\Leftrightarrow\)2x=0
\(\Leftrightarrow\)x=0(tmđk)
a) \(x\left(x+4\right)-4x+1=0\)
b) \(2\left(x-3\right)+4=2x+2\)
c) \(\dfrac{x+3}{2}-\dfrac{2x+1}{4}=\dfrac{1}{4}\)
d) \(\dfrac{x^2+3x}{x+3}+3=0\)
e) \(x^2-3x\left(x-1\right)-3x-2=0\)
Bài 1: a;b;c > 0 và abc = 1
Chứng minh : \(\dfrac{a}{b^4+c^4+a}+\dfrac{b}{a^4+c^4+b}+\dfrac{c}{a^4+b^4+c}\le1\)
Bài 2: x;y;z > 0 và x + y + z = 2
Chứng minh : \(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
giải các phương trình sau
a, 3(x-1) -3=2(x+3)
b, \(\dfrac{x+4}{4}-\dfrac{x+3}{3}=\dfrac{x+6}{6}\)
c,\(\left(2x-1\right)^2-x^2=0\)
d,\(\dfrac{x}{x+3}-\dfrac{2x}{x-3}-\dfrac{3x}{9-x^2}=0\)
câu 1 giải các pt sau
a,3x-12=0 b,(x-2)(2x+3)=0 c,\(\dfrac{x+2}{x-2}-\dfrac{6}{x+2}=\dfrac{x^2}{x^2-4}\)
3x -2(x-3) =6
\(\dfrac{2x-1}{3}\)-x-1=\(\dfrac{x+2}{4}\)
(\(\left(x-1\right)^2\)-9\(\left(x+1\right)^2\)=0
\(\dfrac{x-4}{x-1}\)+\(\dfrac{x+4}{x+1}\)=2
P=(\(\dfrac{4x}{2+x}\) + \(\dfrac{8x^2}{4-x^{ }2}\)) : (\(\dfrac{x-1}{x^2-2x}\) - \(\dfrac{2}{x}\)) (x≠0; x≠2; x≠1)
\(\dfrac{x-1}{99}-\dfrac{x+1}{101}+\dfrac{x-2}{98}-\dfrac{x+2}{102}+\dfrac{x-3}{97}-\dfrac{x+3}{103}+\dfrac{x-4}{96}-\dfrac{x+4}{104}=0\)
giải các phương trình sau
a, 3x -(3x+2) =x+3
b, \(\dfrac{5x-1}{4}+\dfrac{2x-1}{3}=\dfrac{3x}{2}\)
c, \(\left(x^2-3^2\right)+2\left(x-3\right)=0\)
d,\(\dfrac{1}{x-1}+\dfrac{2}{1+x}-\dfrac{4x+6}{x^2-1}=0\)
tìm x biết :
4x(x+1) = 8(x+1)
x(2x+1) +\(\dfrac{1}{3}-\dfrac{2}{3}x=0\)
x(x-4) +(x-4)2 =0
Tìm x
a, \(\dfrac{x+5}{4}-\dfrac{x}{2}+1=0\)
b, \(3\left(x+2\right)=\dfrac{x-4}{3}\)