Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thơ Nụ =))

\(\dfrac{1}{\sqrt{5}+\sqrt{3}}-\dfrac{1}{\sqrt{5}-\sqrt{3}}\)

\(\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}\)

\(\sqrt{127-48\sqrt{7}}-\sqrt{127+48\sqrt{7}}\)

\(\dfrac{\sqrt{10}+\sqrt{6}}{2\sqrt{5}+\sqrt{12}}\)

HT.Phong (9A5)
4 tháng 8 lúc 7:29

\(\dfrac{1}{\sqrt{5}+\sqrt{3}}-\dfrac{1}{\sqrt{5}-\sqrt{3}}\\ =\dfrac{\sqrt{5}-\sqrt{3}}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}-\dfrac{\sqrt{5}+\sqrt{3}}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}\\ =\dfrac{\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}}{5-3}\\ =\dfrac{-2\sqrt{3}}{2}\\ =-\sqrt{3}\)

==========================

\(\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}\\ =\dfrac{\sqrt{\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot1+1^2}}{\sqrt{6}-\sqrt{2}}\\ =\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}\left(\sqrt{3}-1\right)}\\ =\dfrac{\sqrt{3}-1}{\sqrt{2}\left(\sqrt{3}-1\right)}\\ =\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\) 

Toru
4 tháng 8 lúc 7:33

\(\dfrac{1}{\sqrt{5}+\sqrt{3}}-\dfrac{1}{\sqrt{5}-\sqrt{3}}\\ =\dfrac{\sqrt{5}-\sqrt{3}}{5-3}-\dfrac{\sqrt{5}+\sqrt{3}}{5-3}\\ =\dfrac{\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}}{2}\\ =\dfrac{-2\sqrt{3}}{2}=-\sqrt{3}\\ ---\\ \dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}=\dfrac{\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}}{\sqrt{2}\left(\sqrt{3}-1\right)}\\ =\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}\left(\sqrt{3}-1\right)}=\dfrac{\left|\sqrt{3}-1\right|}{\sqrt{2}\left(\sqrt{3}-1\right)}\\ =\dfrac{\sqrt{3}-1}{\sqrt{2}\left(\sqrt{3}-1\right)}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)

\(---\\ \sqrt{127-48\sqrt{7}}-\sqrt{127+48\sqrt{7}}\\ =\sqrt{\left(3\sqrt{7}\right)^2-2.3\sqrt{7}.8+8^2}-\sqrt{\left(3\sqrt{7}\right)^2+2.3\sqrt{7}.8+8^2}\\ =\sqrt{\left(3\sqrt{7}-8\right)^2}-\sqrt{\left(3\sqrt{7}+8\right)^2}\\ =\left|3\sqrt{7}-8\right|-\left|3\sqrt{7}+8\right|\\ =8-3\sqrt{7}-3\sqrt{7}-8\\ =-6\sqrt{7}\\ ---\\ \dfrac{\sqrt{10}+\sqrt{6}}{2\sqrt{5}+\sqrt{12}}=\dfrac{\sqrt{10}+\sqrt{6}}{2\sqrt{5}+2\sqrt{3}}\\ =\dfrac{\sqrt{2}\left(\sqrt{5}+\sqrt{3}\right)}{2\left(\sqrt{5}+\sqrt{3}\right)}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)

#$\mathtt{Toru}$

HT.Phong (9A5)
4 tháng 8 lúc 7:39

\(\sqrt{127-48\sqrt{7}}-\sqrt{127+48\sqrt{7}}\\ =\sqrt{8^2-2\cdot8\cdot3\sqrt{7}+\left(3\sqrt{7}\right)^2}-\sqrt{8^2+2\cdot8\cdot3\sqrt{7}+\left(\sqrt{7}\right)^2}\\ =\sqrt{\left(8-3\sqrt{7}\right)^2}-\sqrt{\left(8+3\sqrt{7}\right)^2}\\ =8-3\sqrt{7}-8-3\sqrt{7}\\ =-6\sqrt{7}\)

=====================

\(\dfrac{\sqrt{10}+\sqrt{6}}{2\sqrt{5}+\sqrt{12}}\\ =\dfrac{\sqrt{10}+\sqrt{6}}{2\sqrt{5}+2\sqrt{3}}\\ =\dfrac{\sqrt{2}\left(\sqrt{5}+\sqrt{3}\right)}{2\left(\sqrt{5}+\sqrt{3}\right)}\\ =\dfrac{\sqrt{2}}{2}\)


Các câu hỏi tương tự
griselda
Xem chi tiết
Trang Nguyễn
Xem chi tiết
Phạm Hà Linh
Xem chi tiết
dswat monkey
Xem chi tiết
nngoc
Xem chi tiết
Nguyễn Đan Xuân Nghi
Xem chi tiết
Xem chi tiết
Ly Ly
Xem chi tiết
Thaor
Xem chi tiết
Hoang Minh
Xem chi tiết