\(D=6+6^2+6^3+...+6^{100}\\ \Rightarrow6D=6^2+6^3+6^4...+6^{101}\\ \Rightarrow6D-D=\left(6^2+6^3+6^4...+6^{101}\right)-\left(6+6^2+6^3+...+6^{100}\right)\\ \Rightarrow5D=6^{101}-6\)
\(\Rightarrow D=\dfrac{6^{101}-6}{5}\)
\(D=6+6^2+6^3+...+6^{100}\)
\(6D=6\left(6+6^2+6^3+...+6^{100}\right)\)
\(6D=6^2+6^3+6^4+...+6^{101}\)
\(6D-D=\left(6^2+6^3+6^4+...+6^{101}\right)-\left(6+6^2+6^3+...+6^{100}\right)\)
\(5D=6^{101}-6\)
\(D=\dfrac{6^{101}-6}{5}\)
Vậy \(D=\dfrac{6^{101}-6}{5}\)
Ta có: \(D=6+6^2+6^3+...+6^{100}\)
\(\Leftrightarrow6D=6^2+6^3+6^4+...+6^{101}\)
\(\Leftrightarrow5D=6^{101}-6\)
\(\Leftrightarrow D=\dfrac{6^{101}-6}{5}\)