Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyễn hữu kim

cứu

Nguyễn Lê Phước Thịnh
29 tháng 6 2025 lúc 21:09

a: ĐKXĐ: \(x^2+5x+2\ge0\)

=>\(x^2+2\cdot x\cdot\frac52+\frac{25}{4}-\frac{17}{4}\ge0\)

=>\(\left(x+\frac52\right)^2\ge\frac{17}{4}\)

=>\(\left[\begin{array}{l}x+\frac52\ge\frac{\sqrt{17}}{2}\\ x+\frac52\le-\frac{\sqrt{17}}{2}\end{array}\right.\Rightarrow\left[\begin{array}{l}x\ge\frac{\sqrt{17}-5}{2}\\ x\le\frac{-\sqrt{17}-5}{2}\end{array}\right.\)

\(\left(x+4\right)\left(x+1\right)-3\cdot\sqrt{x^2+5x+2}=6\)

=>\(x^2+5x+4-3\cdot\sqrt{x^2+5x+2}-6=0\)

=>\(x^2+5x+2-3\cdot\sqrt{x^2+5x+2}-4=0\)

=>\(\left(\sqrt{x^2+5x+2}-4\right)\left(\sqrt{x^2+5x+2}+1\right)=0\)

\(\sqrt{x^2+5x+2}+1>0\forall x\) thỏa mãn ĐKXĐ

nên \(\sqrt{x^2+5x+2}-4=0\)

=>\(x^2+5x+2=4^2=16\)

=>\(x^2+5x-14=0\)

=>(x+7)(x-2)=0

=>\(\left[\begin{array}{l}x=-7\left(nhận\right)\\ x=2\left(nhận\right)\end{array}\right.\)

d: ĐKXĐ: \(\begin{cases}2-x^2\ge0\\ x<>0\end{cases}\Rightarrow\begin{cases}x^2\le2\\ x<>0\end{cases}\Rightarrow\begin{cases}-\sqrt2\le x\le\sqrt2\\ x<>0\end{cases}\)

Ta có: \(\frac{1}{x}+\frac{1}{\sqrt{2-x^2}}=2\)

=>\(\left(\frac{1}{x}-1\right)+\left(\frac{1}{\sqrt{2-x^2}}-1\right)=0\)

=>\(\frac{1-x}{x}+\frac{1-\sqrt{2-x^2}}{\sqrt{2-x^2}}=0\)

=>\(\frac{x-1}{x}+\frac{\sqrt{2-x^2}-1}{\sqrt{2-x^2}}=0\)

=>\(\frac{x-1}{x}+\frac{2-x^2-1}{\sqrt{2-x^2}\cdot\left(\sqrt{2-x^2}+1\right)}=0\)

=>\(\frac{x-1}{x}+\frac{1-x^2}{\sqrt{2-x^2}\cdot\left(\sqrt{2-x^2}+1\right)}=0\)

=>\(\frac{x-1}{x}-\frac{\left(x-1\right)\left(x+1\right)}{\sqrt{2-x^2}\cdot\left(\sqrt{2-x^2}+1\right)}=0\)

=>\(\left(\frac{1}{x}-\frac{\left(x+1\right)}{\sqrt{2-x^2}\cdot\left(\sqrt{2-x^2}+1\right)}\right)\cdot\left(x-1\right)=0\)

=>x-1=0

=>x=1(nhận)

j: ĐKXĐ: \(\begin{cases}3x+1\ge0\\ x+3\ge0\end{cases}\Rightarrow\begin{cases}x\ge-\frac13\\ x\ge-3\end{cases}\Rightarrow x\ge-\frac13\)

Ta có: \(\sqrt{3x+1}+\sqrt{x+3}+x-5=0\)

=>\(\sqrt{3x+1}-2+\sqrt{x+3}-2+x-1=0\)

=>\(\frac{3x+1-4}{\sqrt{3x+1}+2}+\frac{x+3-4}{\sqrt{x+3}+2}+\left(x-1\right)=0\)

=>\(\frac{3x-3}{\sqrt{3x+1}+2}+\frac{x-1}{\sqrt{x+3}+2}+\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(\frac{3}{\sqrt{3x+1}+2}+\frac{1}{\sqrt{x+3}+2}+1\right)=0\)

=>x-1=0

=>x=1(nhận)

i:

ĐKXĐ: \(\begin{cases}x-2\ge0\\ x+6\ge0\end{cases}\Rightarrow\begin{cases}x\ge2\\ x\ge-6\end{cases}\Rightarrow x\ge2\)

ta có: \(3\left(2+\sqrt{x-2}\right)=2x+\sqrt{x+6}\)

=>\(6+3\sqrt{x-2}=2x+\sqrt{x+6}\)

=>\(6+3\sqrt{x-2}-3=2x+\sqrt{x+6}-3\)

=>\(6+3\cdot\left(\sqrt{x-2}-1\right)=2x+\frac{x+6-9}{\sqrt{x+6}+3}\)

=>\(6+3\cdot\frac{x-2-1}{\sqrt{x-2}+1}=2x+\frac{x-3}{\sqrt{x+6}+3}\)

=>\(2x+\frac{x-3}{\sqrt{x+6}+3}-6-3\cdot\frac{\left(x-3\right)}{\sqrt{x-2}+1}=0\)

=>\(\left(x-3\right)\left(2+\frac{x-3}{\sqrt{x+6}+3}-\frac{3}{\sqrt{x-2}+1}\right)=0\)

=>x-3=0

=>x=3(nhận)


Các câu hỏi tương tự
Nguyễn Đức Lâm
Xem chi tiết
Skem
Xem chi tiết
Horiii
Thuong Thuong
Thuong Thuong
Thuong Thuong
Huyền Trân
Nguyễn Tuấn Dũng
Dương tâm
Xem chi tiết