Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Có bao nhiêu giá trị nguyên của tham số m để phương trình m + 3 m + 3 sin   x 3 3 = sin   x  có nghiệm thực ?

A. 5

B. 7

C. 3

D. 2

Cao Minh Tâm
6 tháng 6 2019 lúc 11:10

Đáp án A

*Phương trình m + 3 m + 3 sin   x 3 3 = sin   x ⇔ m + 3 m + 3 sin   x 3 = sin 3 x  

⇔ ( m + 3 sin   x ) + 3 m + 3 sin   x 3 = sin 3 x + 3 sin   x       ( 1 )

* Xét hàm số f ( t ) = t 3 + 3 t  trên ℝ . Ta có f ' ( t ) = 3 t 2 + 3 > 0 ∀ t ∈ ℝ  nên hàm số f(t) đồng biến trên ℝ .

Suy ra (1)  f 3 + 3 sin   x 3 f ( sin   x ) ⇔ 3 + 3 sin   x 3 = sin   x

Đặt sin x = t, t ∈ [ - 1 ; 1 ]  Phương trình trở thành  t 3 - 3 t = m

* Xét hàm số g(t) trên t ∈ - 1 ; 1  Ta có g ' ( t ) = 3 t 2 - 3 ≤ 0 , ∀ t ∈ [ - 1 ; 1 ]  và g ' ( t ) = 0 ⇔ t = ± 1  Suy ra hàm số g(t) nghịch biến trên [-1;1]

* Để phương trình có nghiệm đã cho có nghiệm thực  ⇔ Phương trình t 3 - 3 t = m  có nghiệm trên [-1;1]

m i n [ - 1 ; 1 ] g ( t ) ≤ m ≤ m a x [ - 1 ; 1 ] g ( t ) ⇔ g ( 1 ) ≤ m ≤ g ( - 1 ) ⇔ - 2 ≤ m ≤ 2

Vậy có 5 giá trị nguyên của m thỏa mãn là  m ∈ - 2 ; - 1 ; 0 ; 1 ; 2


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết