CMR : Với n nguyên thì \(\sqrt{n^2+n^2\left(n+1\right)^2+\left(n+1\right)^2}\)là số nguyên
1, CMR nếu a, b, c là các số tự nhiên đôi một nguyên tố cùng nhau thì \(\left(ab+bc+ca,abc\right)=1\)
2, CMR \(\forall n\in N\)* thì \(\dfrac{\left(17+12\sqrt{2}\right)^n-\left(17-12\sqrt{2}\right)^n}{4\sqrt{2}}\)
3, Tìm x,y∈Z:\(x^3-y^3=13\left(x^2+y^2\right)\)
CMR: Số A= 12\(\sqrt{\left(n-1\right)n\left(n+1\right)\left(n+2\right)+1}\) +23 với mọi n là số nguyên dương có thể viết được thành tổng các bình phương của ba số nguyên dương lẻ liên tiếp.
a, CMR nếu n là số nguyên dương thì \(2\left(1^{2013}+2^{2013}+...+n^{2013}\right)\) chia hết cho \(n\left(n+1\right)\)
b, Tìm tất cả các số nguyên tố p,q tm đk \(p^2-2q^2=1\)
Cho dãy số \(U_n=\left(1+\sqrt{2}\right)^n+\left(1-\sqrt{2}\right)^n+1\), với \(n\) là số nguyên dương. Tìm công thức tổng quát tính \(U_{n+1}\) theo \(U_n\) và \(U_{n-1}\) với \(n\ge2\).
Chứng minh rằng số \(\sqrt{n^2+n^2.\left(n+1\right)^2+\left(n+1\right)^2}\) là số nguyên nếu n là số nguyên
CMR: Với n thuộc N* thì:
\(\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{x+1}}\right)\)
Từ đó suy ra tổng sau k là số nguyên tố:
\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2008\sqrt{2007}}\)
Các bạn giúp mk với nhé! Mk cần gấp
Chứng minh rằng với mọi số nguyên dương n, p ta có :
\(\dfrac{1}{\left(1+1\right)\sqrt[p]{1}}+\dfrac{1}{\left(2+1\right)\sqrt[p]{2}}+...+\dfrac{1}{\left(n+1\right)\sqrt[p]{n}}\) < p
Chứng minh rằng với mọi số nguyên dương n, p ta có :
\(\dfrac{1}{\left(1+1\right)\sqrt[p]{1}}+\dfrac{1}{\left(2+1\right)\sqrt[p]{2}}+...+\dfrac{1}{\left(n+1\right)\sqrt[p]{n}}\) < p