Bài 1. CMR với mọi số tự nhiên n thì:
a, 11^n+2 + 12^2n+1 chia hết cho 133
b, 5^n+2 + 26.5^n + 8^2n+1 chia hết cho 59
c, 7.5^n + 12.6^n chia hết cho 19
Bài 2. Tìm số tự nhiên n sao cho 10^20022n - 1 chia hết cho 9
Cmr: Với mọi số tự nhiên n>1 thi nn-n2+n+1 chia hết cho (n-1)2
câu 1 :chứng minh : nn-n^2+n-1 chia hết cho (n-1)^2 với n là số nguyên lớn hơn 1
câu 2 : chứng minh với n lẻ n thuộc N* thì 1^n+2^n+3^n+...+n^n chia hết cho 1+2+3+...+n
câu3: có tồn tại số tự nhiên n để n^2+3n+39 và n^2+n+37 đồng thời chia hết cho 49 không?
chứng minh
a) (n+3)^2 - (n+1)^2 chia hết cho 8 với mọi số tự nhiên n
b) (n+6)^2 - (n-6)^2 chia hết cho 24 với mọi số tự nhiên n
CMR A=(23n+1+2n)(n5-n) chia hết cho 30 với mọi số tự nhiên n
CM
a)25^n+1-25^n chia hết cho 100 với mọi số tự nhiên n
b)n^2(n-1)-2n(n-1) chia hết cho 6 với mọi số nguyên n
C/m với mọi số tự nhiên n>1 thì nn-n2+n-1 chia hết cho (n-1)2
CMR với mọi số tự nhiên n thì n^2+3n+5 chia hết cho 21
1,Chứng minh n^6+n^4-2n^2 chia hết cho 72?
2,CMR: 3^(2n) - 9 chia hết cho 72?
3,chứng minh rằng với mọi số tự nhiên n thì 7n và 7n+4 có hai chữ số tận cùng như nhau
4, Chứng minh rằng mọi số nguyên tố p>3 thì p2-1 chia hết cho 24