Câu hỏi của Tuyển Trần Thị - Toán lớp 9 - Học toán với OnlineMath (https://olm.vn/hoi-dap/detail/92103541528.html)
Tham khảo nha!
Câu hỏi của Tuyển Trần Thị - Toán lớp 9 - Học toán với OnlineMath (https://olm.vn/hoi-dap/detail/92103541528.html)
Tham khảo nha!
Cho a, b, c là các số thực không âm có tổng bằng 2. Tìm\(maxA\)
\(A=\left(3a^2-2ab+3b^2\right)\left(3b^2-2bc+3c^2\right)\left(3c^2-2ca+3a^2\right)\)
Cho a, b, c là các số dương . CMR:
\(\frac{a\left(b+2c\right)}{\sqrt{3b^2+6c^2}}+\frac{b\left(c+2a\right)}{\sqrt{3c^2+6a^2}}+\frac{c\left(a+2b\right)}{\sqrt{3a^2+6b^2}}\le a+b+c\)
CMR với mọi số thực dương a, b, c bất đẳng thức sau luôn đúng:
\(\frac{\left(b+c-a\right)^2}{\left(b+c\right)^2+a^2}+\frac{\left(c+a-b\right)^2}{\left(c+a\right)^2+b^2}+\frac{\left(a+b-c\right)^2}{\left(a+b\right)^2+c^2}\ge\frac{3}{5}\)
1. Cho a,b,c là ba số dương. Chứng minh rằng:
\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{a+b+c}{6}\)
2. Cho ba số thực dương a,b,c thoản mãn abc=1. Chứng minh rằng:
\(\frac{4a^3}{\left(1+b\right)\left(1+c\right)}+\frac{4b^3}{\left(1+c\right)\left(1+a\right)}+\frac{4c^3}{\left(1+a\right)\left(1+b\right)}\ge3\)
Cho a,b,c >0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)=2016. CMR: \(\frac{bc}{a^2\left(3b+c\right)}+\frac{ca}{b^2\left(3c+a\right)}+\frac{ab}{c^2\left(3a+b\right)}\ge504\)
Cho a, b, c là các số thực dương. Chứng minh rằng:
\(\sqrt{\frac{bc}{a\left(3b+a\right)}}+\sqrt{\frac{ca}{b\left(3c+b\right)}}+\sqrt{\frac{ab}{c\left(3a+c\right)}}\ge\frac{3}{2}\)
Bài 1 :Cho a,b,c dương thỏa mãn a+b+c=2
CMR \(\frac{bc}{\sqrt{3a^2+4}}+\frac{ca}{\sqrt{3b^2+4}}+\frac{ab}{\sqrt{3c^2+4}}\ge\frac{\sqrt{3}}{3}\)
Bài 2:Cho a,b,c>0. CMR
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
Biết a,b,c > 0 thỏa mãn ab+bc+ca=3abc
\(P=\dfrac{a}{\left(3a-1\right)^2}+\dfrac{b}{\left(3b-1\right)^2}+\dfrac{c}{\left(3c-1\right)^2}\) đạt min
Cho a,b,c là các số thực dương thỏa mãn \(abc=1\), chứng minh rằng:
\(\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)\)
\(\ge2\sqrt{2\left(2+a^3b^3+b^3c^3+c^3a^3+a^3+b^3+c^3\right)}\)