cho hàm số (P ) :\(y=x^2\) . Tìm các giá trị của m để đường thẳng \(\left(d\right):y=2x+m-1\) cắt đồ thị hàm số (P) tại 2 điểm phân biệt \(A\left(x1;y1\right),B\left(x2;y2\right)\) thỏa mãn y1.y2 - x1.x2 = 12
cho (P) y=x^2 , (d) y=k(x - 1) +2 cho 2 điểm phân biệt A(x1,y1) , B(x2,y2) tìm k thỏa mãn (x1^2 + y1) + (x2^2 + y2) = 14
Cho A(X1;Y1) B(X2;Y2) là 2 điểm nằm trên đườn thẳng (d) y=(3^1/2)x+b CMR AB=2|X2-X1|
Cho parabol (P) : y=x và đường thẳng ( d ): y=mx-2 ( m là tham số m khác 0). Gọi A ( x1, y1) . B ( x2, y2) là 2 giao điểm của P và d . Tìm m sao cho : y1 + y2 = 2( x1 + x2 ) -1
Tìm tất cả các giá trị của tham số m sao cho parabol (P): y = x2 cắt đường thẳng d: y = mx – 2 tại 2 điểm phân biệt A(x1;y1) và B(x2;y2) thỏa mãn y 1 + y 2 = 2 ( x 1 + x 2 ) − 1
Cho parabol (P): y = x 2 và đường thẳng (d): y = mx + 1. Gọi A ( x 1 ; y 1 ) và B ( x 2 ; y 2 ) là các giao điểm của (d) và (P). Tìm m để biểu thức M = ( y 1 − 1 ) ( y 2 − 1 ) đạt giá trị lớn nhất.
A. m = 0
B. m = 2
C. m = 1
D. m = −1
1. (P) : y=x^2 , (d): y= 2mx - m + 2 M? (P) cắt (d) tại 2 điểm pb M (x1 , y1 ) , N (x2 , y2 ) t/m 4 (x1 + x2 ) + y1 × y2 =1
Cho Parabol (P: y=x^2 và (d): y= 3x+ m^2 *-1 (với m là tham số) đường thẳngTìm tất cả các giá trị của tham số m để đường thẳng cắt Parabol tại hai điểm phân biệt A(x1 ,y1) B (x2, y2) sao cho x1,y1 thỏa mãn |x1|+2 |x2| = 3 : .
Cho parabol (P) y=2x^2 và (d) y=-x+6.Biết (P) và (d) cắt nhau tại 2 điểm phân biệt A(x1;y1);B(x2;y2) với x1<x2.Tính 4x2 +y1