\(A=2+2^2+2^3+2^4+...+2^{2004}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2003}+2^{2004}\right)\)
\(A=6+2^2\left(2+2^2\right)+...+2^{2002}\left(2+2^2\right)\)
\(A=6+2^2\cdot6+...+2^{2002}\cdot6\)
\(A=6\left(1+2^2+...+2^{2002}\right)\) \(⋮\) \(3\)
chia hết cho 7 thì hết hợp 3 số, chia hết cho 15 thì hết hợp 4 số
Bạn tham khảo link này nhé :
https://olm.vn/hoi-dap/detail/12446658194.html
~Study well~
#SJ
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2003}+2^{2004}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2003}\left(1+2\right)\)
\(A=\left(1+2\right)\left(2+2^3+...2^{2003}\right)\)
\(A=3\left(2+2^3+...+2^{2003}\right)\)
\(\Rightarrow A⋮3\)
chứng minh A chia hết cho 7 thì gộp 3 số
chứng minh A chia hết cho 15 thì gộp 4 số
HOK TOT
1) \(A=2+2^2+2^3+2^4+...+2^{2004}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2003}+2^{2004}\right)\)
\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{2002}\left(2+2^2\right)\)
\(A=6+2^2\cdot6+...+2^{2002}\cdot6\)
\(A=2\cdot3+2^3\cdot3+...+2^{2003}\cdot3\)
\(A=3\left(2+2^3+...+2^{3003}\right)⋮3\) (đpcm)
2) \(A=2+2^2+2^3+2^4+...+2^{2004}\)
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2002}+2^{2003}+2^{2004}\right)\)
\(A=\left(2+2^2+2^3\right)+2^3\left(2+2^2+2^3\right)+...+2^{2001}\left(2+2^2+2^3\right)\)
\(A=14+2^3\cdot14+...+2^{2001}\cdot14\)
\(A=2\cdot7+2^4\cdot7+...+2^{2002}\cdot7\)
\(A=7\left(2+2^4+...+2^{2002}\right)⋮7\) (đpcm)
3) Để A chia hết cho 15 thì A phải chia hết cho 3 và 5 (vì 15 = 3 . 5)
Chứng minh chia hết cho 3 tớ đã nói ở phần 1).
\(A=2+2^2+2^3+2^4+...+2^{2004}\)
\(A=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{2002}+2^{2004}\right)\)
\(A=\left(2+2^3\right)+2\left(2+2^3\right)+...+2^{2001}\left(2+2^3\right)\)
\(A=10+2\cdot10+...+2^{2001}\cdot10\)
\(A=2\cdot5+2^2\cdot5+...+2^{2002}\cdot5\)
\(A=5\left(2+2^2+...+2^{2002}\right)⋮5\)
Vì A chia hết cho 3 và 5 nên A cũng chia hết cho 15. (đpcm)
=))
a) Ta có : A = 2 + 22 + 23 + 24 + ... + 22004
= (2 + 22) + (23 + 24) + ... + (22003 + 22004)
= (2 + 22) + 22.(2 + 22) + ... + 22002.(2 + 22)
= 6 + 22 . 6 + ... + 22002 . 6
= 6.(1 + 22 + ... + 22002)
= 2.3.(1 + 22 + ... + 22002) \(⋮\)3
=> A \(⋮\)3 (ĐPCM)
b) A = 2 + 22 + 23 + 24 + ... + 22004
= (2 + 22 + 23) + (24 + 25 + 26) + ... + (22002 + 22003 + 22004)
= (2 + 22 + 23) + 23.(2 + 22 + 23) + ... + 22001.(2 + 22 + 23)
= 14 + 23 . 14 + ... + 22001 . 14
= 14.(1 + 23 + ... + 22001)
= 7.2.(1 + 23 + ... + 22001) \(⋮\) 7
=> A \(⋮\)7 (ĐPCM)
c) A = 2 + 22 + 23 + 24 + ... + 22004
= (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (22001 + 22002 + 22003 + 22004)
= (2 + 22 + 23 + 24) + 24.(2 + 22 + 23 + 24) + ... + 22000.(2 + 22 + 23 + 24)
= 30 + 24 . 30 + ... + 22000 . 30
= 30.(1 + 24 + ... + 22000)
= 15 . 2 . (1 + 24 + ... + 22000) \(⋮\)15
=> A \(⋮\)15 (ĐPCM)
\(A=2+2^2+2^3+.....+2^{2004}\)
<=> \(2A=2^2+2^3+2^4+....+2^{2005}\)
<=> \(2A-A=\left[2^2+2^3+2^4+....+2^{2005}\right]-\left[2+2^2+2^3+...+2^{2004}\right]\)
<=> \(A=2^{2005}-2\)= \(2\left[2^{2004}-1\right]\)=\(2\left[2^{1002}-1\right]\left[2^{1002}+1\right]\)
Ta có: 2 chia 3 dư -1 nên \(2^{1002}\)chia 3 dư 1 \(\Leftrightarrow\)\(2^{1002}-1\)chia hết cho 3 \(\Rightarrow\)A chia hết cho 3
\(2^3=8\)chia 7 dư 1 nên \(\left[2^3\right]^{334}=2^{1002}\)chia 7 dư 1 \(\Leftrightarrow\)\(2^{1002}-1\)chia hết cho 7 \(\Rightarrow\) A chia hết cho 7
\(2^2=4\)chia 5 dư -1 nên \(\left[2^2\right]^{501}=2^{1002}\)chia 5 dư -1 \(\Leftrightarrow\) \(2^{1002}+1\)chia hết cho 5\(\Rightarrow\)A chia hết cho 5
Mà A chia hết cho 3 ; 3 và 5 nguyên tố cùng nhau nên A chia hết cho 15
\(\RightarrowĐpcm\)